• 제목/요약/키워드: Problem of Moments

검색결과 176건 처리시간 0.023초

Prestress evaluation in continuous PSC bridges by dynamic identification

  • Breccolotti, Marco;Pozzaa, Francesco
    • Structural Monitoring and Maintenance
    • /
    • 제5권4호
    • /
    • pp.463-488
    • /
    • 2018
  • In the last decades, research efforts have been spent to investigate the effect of prestressing on the dynamic behaviour of prestressed concrete (PSC) beams. Whereas no agreement has been reached among the achievements obtained by different Researchers and among the theoretical and the experimental results for simply supported beams, very few researches have addressed this problem in continuous PSC beams. This topic is, indeed, worthy of consideration bearing in mind that many relevant bridges and viaducts in the road and railway networks have been designed and constructed with this structural scheme. In this paper the attention is, thus, focused on the dynamic features of continuous PSC bridges taking into account the effect of prestressing. This latter, in fact, contributes to the modification of the distribution of the bending stress along the beam, also by means of the secondary moments, and influences the flexural stiffness of the beam itself. The dynamic properties of a continuous, two spans bridge connected by a nonlinear spring have been extracted by solving an eigenvalue problem in different linearized configurations corresponding to different values of the prestress force. The stiffness of the nonlinear spring has been calculated considering the mechanical behaviour of the PSC beam in the uncracked and in the cracked stage. The application of the proposed methodology to several case studies indicates that the shift from the uncracked to the cracked stage due to an excessive prestress loss is clearly detectable looking at the variation of the dynamic properties of the beam. In service conditions, this shift happens for low values of the prestress losses (up to 20%) for structure with a high value of the ratio between the permanent load and the total load, as happens for instance in long span, continuous box bridges. In such conditions, the detection of the dynamic properties can provide meaningful information regarding the structural state of the PSC beam.

A MOM-based algorithm for moving force identification: Part I - Theory and numerical simulation

  • Yu, Ling;Chan, Tommy H.T.;Zhu, Jun-Hua
    • Structural Engineering and Mechanics
    • /
    • 제29권2호
    • /
    • pp.135-154
    • /
    • 2008
  • The moving vehicle loads on a bridge deck is one of the most important live loads of bridges. They should be understood, monitored and controlled before the bridge design as well as when the bridge is open for traffic. A MOM-based algorithm (MOMA) is proposed for identifying the timevarying moving vehicle loads from the responses of bridge deck in this paper. It aims at an acceptable solution to the ill-conditioning problem that often exists in the inverse problem of moving force identification. The moving vehicle loads are described as a combination of whole basis functions, such as orthogonal Legendre polynomials or Fourier series, and further estimated by solving the new system equations developed with the basis functions. A number of responses have been combined, some numerical simulations on single axle, two axle and multiple-axle loads, being either constant or timevarying, have been carried out and compared with the existing time domain method (TDM) in this paper. The illustrated results show that the MOMA has higher identification accuracy and robust noise immunity as well as producing an acceptable solution to ill-conditioning cases to some extent when it is used to identify the moving force from bridge responses.

실험을 통한 시공 중 강사장교의 극한거동 연구 (Experimental Study for Ultimate Behavior of Steel Cable Stayed Bridge Under Construction)

  • 이기세;김승준;최준호;강영종
    • 한국강구조학회 논문집
    • /
    • 제24권6호
    • /
    • pp.683-692
    • /
    • 2012
  • 사장교의 거더에는 케이블의 수평방향 분력에 의하여 휨모멘트 외에 부가적인 압축력이 가해지게 된다. 세장하게 설계되는 거더는 이러한 압축력에 의해 강성이 저하될 수 있으며, FCM으로 가설되는 사장교의 경우 이러한 문제는 완성계보다 시공중 모델에 대하여 고려되어야 할 필요가 있다. 현행 설계기준에서는 사장교 거더의 안정성 평가를 위하여 선형탄성고유치 해석법을 제안하고 있다. 그러나 이러한 방법으로는 비선형성 거동을 하는 사장교의 구조적 특성을 반영할 수 없을 뿐 아니라, 완성계 상태를 기준으로 하는 해석 방법은 시공중 모델에 대한 적용이 어렵다 할 수 있다. 따라서 본 연구에서는 FCM으로 가설되는 2주탑 3경간 강사장교에 있어, 케이블 거치 형식과 거더의 강성에 따라 총 3개의 모델을 제작하고 실험적, 해석적으로 시공중 사장교의 거동 특성을 분석하였다.

유방 조직형태에 따른 유방암 진단 2차원 마이크로파 영상복원 (2D Microwave Image Reconstruction of Breast Cancer Detection for Breast Types)

  • 김기채;김태홍;이종문;전순익;백정기
    • 한국전자파학회논문지
    • /
    • 제27권7호
    • /
    • pp.646-652
    • /
    • 2016
  • 본 논문에서는 전자파를 이용한 유방암 진단에서 유방의 조직형태에 따른 2차원 영상복원 결과를 논의하고 있다. 유방의 영상복원에 사용한 시스템은 16개의 송신/수신 안테나로 구성되어 있으며, 1,700 MHz를 사용하여 4가지의 유방조직형태(ED-, HD-, SC-, FT-type)에 대하여 영상복원을 수행하였다. 순방향 문제의 해석에는 모멘트법을 적용하였으며, 역문제 해석을 위한 최적화 알고리즘은 simplex 법을 사용하였다. 영상복원의 결과, ED형 및 HD형은 영상복원이 용이하지만, SC형 및 FT형의 영상복원에는 오차가 많이 포함되어 있어 복원이 쉽지 않음을 확인할 수 있었다.

속도포텐셜접속법과 특이점분포법에 의한 방파제에 근접한 부유식 해상공항에 대한 유탄성 응답 해석 (Hydroelastic Responses for a VLFS close to a Breakwater by the Velocity Potential Continuation and Singularity Distribution Method)

  • 이호영;곽영기;박종환
    • 대한조선학회논문집
    • /
    • 제39권2호
    • /
    • pp.11-18
    • /
    • 2002
  • 본 논문은 착저식 방파제를 고려하여 방파제 후면에 위치한 부유식 해상공항의 파도 중에서 유탄성 응답을 계산하는 방법을 제시하였다. 방파제 효과를 고려한 일반화된 방사문제를 해석하기 위하여 소오스-다이폴 분포법을 사용하였고, 산란문제를 해석하기 위하여 속도포텐셜접속법과 소오스-다이폴 분포법을 이용하였다. 구조물의 응답은 자유-자유 보의 고유 모드함수에 의한 모드 해석법을 사용하여 계산하였다. 계산 모델로 길이가 1000m의 해상공항 구조물을 도입하였고, 방파제의 효과를 살펴보기 위해 방파제와 해상공항사이의 거리 및 입사화랑의 각도를 변화시키면서 수직 응답 및 굽힘 모우멘트 등을 계산하였다.

Forced vibrations of an elastic rectangular plate supported by a unilateral two-parameter foundation via the Chebyshev polynomials expansion

  • Zekai Celep;Zeki Ozcan
    • Structural Engineering and Mechanics
    • /
    • 제90권6호
    • /
    • pp.551-568
    • /
    • 2024
  • The present study deals with static and dynamic behaviors including forced vibrations of an elastic rectangular nano plate on the two-parameter foundation. Firstly, the rectangular plate is assumed to be subjected to uniformly distributed and eccentrically applied concentrated loads. The governing equations of the problem are derived by considering the dynamic response of the plate, employing a series of the Chebyshev polynomials for the displacement function and applying the Galerkin method. Then, effects of the non-essential boundary conditions of the plate, i.e., the boundary conditions related to the shearing forces, the bending moments and the corner forces, are included in the governing equation of motion to compensate for the non-satisfied boundary conditions and increase the accuracy of the Galerkin method. The approximate numerical solution is accomplished using an iterative process due to the non-linearity of the unilateral property of the two-parameter foundation. The plate under static concentrated load is investigated in detail numerically by considering a wide range of parameters of the plate and the foundation stiffnesses. Numerical treatment of the problem in the time domain is carried out by assuming a stepwise variation of the concentrated load and the linear acceleration procedure is employed in the solution of the system of governing differential equations derived from the equation of motion. Time variations of the contact region and those of the displacements of the plate are presented in the figures for various numbers of the two-parameter of the foundation, as well as the classical and nano parameters of the plate particularly focusing on the non-linearity of the problem due to the plate lift-off from the unilateral foundation. The effects of classical and nonlocal parameters and loading are investigated in detail. Definition of the separation between the plate and the two-parameter foundation is presented and applied to the given problem. The effect of the lift-off on the static and dynamic behavior of the rectangular plate is studied in detail by considering various loading conditions. The numerical study shows that the effect of nonlocal parameters on the behavior of the plate becomes significant, when nonlinearity becomes more profound, due to the lift-off of the plate. It is seen that the size effects are significant in static and dynamic analysis of nano-scaled rectangular plates and need to be included in the mechanical analyses. Furthermore, the corner displacement of the plate is affected more significantly from the lift-off, whereas it is less marked in the time variation of the middle displacement of the plate. Several numerical examples are presented to examine the sensibility of various parameters associated with nonlocal parameters of the plate and foundation. Both stiffening and softening nonlocal parameters behavior of the plate are identified in the numerical solutions which show that increasing the foundation stiffness decreases the extent of the contact region, whereas the stiffness of the shear layer increases the contact region and reduces the foundation settlement considerably.

수치해석과 연계한 지하구조물의 확률론적 신뢰성 평가를 위한 점추정법의 적용성에 관한 비교 연구 (Comparative Study on the Applicability of Point Estimate Methods in Combination with Numerical Analysis for the Probabilistic Reliability Assessment of Underground Structures)

  • 박도현;김형목;류동우;최병희;한공창
    • 터널과지하공간
    • /
    • 제22권2호
    • /
    • pp.86-92
    • /
    • 2012
  • 점추정법은 exact probabilistic method로 간주되는 Monte Carlo simulation에 비해 계산의 정확도는 다소 떨어지지만, 성능함수의 통계 모멘트를 분석하기 위한 샘플링 수를 크게 줄일 수 있는 해석 과정에서의 간편함과 비교적 정확한 통계 모멘트의 계산으로 인해 지반 및 암반공학에서의 확률론적 신뢰성 평가에 자주 사용되고 있다. 본 연구에서는 Rosenblueth와 Zhou & Nowak의 점추정법과 Monte Carlo simulation의 계산 결과를 비교 분석하여 점추정법의 정확도와 적용성을 조사하였다. 비교 분석은 해석적 해가 주어진 탄성 지반내 원형터널의 라이닝 지보 문제를 대상으로 하였다. 분석 결과, 해석적 해가 비선형 함수임에도 불구하고, 점추정법과 Monte Carlo simulation에 의해 계산된 통계 모멘트가 평균 약 1-2%의 오차를 보여 수치해석과 연계한 지하구조물의 확률론적 신뢰성 평가를 위한 점추정법의 적용성을 확인하였다.

일반화 지수분포를 따르는 제 1종 구간 중도절단표본에서 모수 추정 (Estimation for the generalized exponential distribution under progressive type I interval censoring)

  • 조영석;이창수;신혜정
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권6호
    • /
    • pp.1309-1317
    • /
    • 2013
  • 일반화 지수분포 (generalized exponential distribution)를 따르는 점진 제 1종 구간 중도절단 (progressive type-I interval censoring) 표본에서 모수 추정은 Chen과 Lio (2010)가 최대우도 추정법 (maximum likelihood estimation), 중간점 근사법 (mid-point approximation method), EM 알고리즘 (expectation maximization algorithm), 적률 추정법 (method of moments estimation; MME)으로 하였으며, 그 방법들 중 평균제곱오차 (mean square error; MSE)가 가장 작은 추정법은 중간점 근사법이다. 하지만 중간점 근사법을 바탕으로 최대우도 추정법을 이용하여 모수를 추정하려고 한다면 모수에 대한 해를 전개할 수 없기 때문에 수치 해석적인 방법을 이용하여 추정하여야 한다. 본 논문에서는 이러한 문제를 해결하기 위해서 근사 최대우도 추정법 (approximate maximum likelihood estimation)을 이용하여 두 종류의 모수를 추정하고, 모의실험을 통하여 수치해석학적인 방법을 이용한 중간점 근사법의 해 (estimate of mid-point approximation method; MP)와 제시한 두 가지 추정량을 평균제곱오차 측면에서 비교한다.

임플랜트의 체결방식에 따른 초기조임력에 의한 응력분포 및 전하중에 관한 연구 (THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION AND PRELOAD OF DIFFERENT CONNECTION TYPES IMPLANT WITH INITIAL CLAMPING)

  • 이범현;전흥재;이수홍;한종현
    • 대한치과보철학회지
    • /
    • 제44권2호
    • /
    • pp.197-206
    • /
    • 2006
  • Statement of problem: One of common problems associated with single teeth dental implant prosthetic is the loosening of screws that retain the implants. Purpose: The maintenance of screw joint stability is considered a function of the preload achieved in the screw when the suggested initial tightening torque is applied. The purpose of this study was to investigate acquired preload after initial clamping torque for estimating screw joint stability. Material and methods: A comparative study on the effect of initial clamping of two types of implant systems with different connections was conducted Three dimensional non-linear finite element analysis is adopted to compare the characteristics of screw preloads and stress distributions between two different types of implant systems composed with abutment, screw, and fixture under the same loading and boundary conditions. Results: 1. When the initial clamping torque of 32Ncm was applied to the implant systems, all types of implants generated the maximum effective stress at the first helix region of screw. 2. Morse taper connection types of implants generate lower stress distributions compared to those by butt joint connection types or implants due to large contact surface between abutment and fixture. 3. The internal types of implant systems with friction grip type implant systems have higher resistance to screw loosening than that of the external types of implant systems since the internal types of implant systems generated larger preload than that generated by the external types for the same tightening moments.

Optimization of cables size and prestressing force for a single pylon cable-stayed bridge with Jaya algorithm

  • ATMACA, Barbaros;DEDE, Tayfun;GRZYWINSKI, Maksym
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.853-862
    • /
    • 2020
  • In recent years, due to the many advantages cable-stayed bridges have often constructed in medium and long span. These advantages can be listed as an aesthetically pleasing appearance, economic and easy construction, etc. The main structural elements of cable-stayed bridges are listed as deck, pylon, cables and foundation. Perhaps one of the most vital and expensive of these structural elements is stay-cables. Stay-cables ensure the allowable displacement and distribution of bending moments along the bridge deck with prestressing force. Therefore the optimum design of the stay-cables and prestressing force are very important in achieving the performance expected from the cable-stayed bridges. This paper aims to obtain the stay-cables size and prestressing force optimization of the cable-stayed bridge. For this purpose, single pylon and fan type cable configuration Manavgat Cable-Stayed Bridge was selected as an example. The three dimensional (3D) finite element model (FEM) of the bridge was created with SAP2000. Analysis of the 3D FEM of the bridge was conducted under the different combined effects of the self-weight of the structural element, prestressing force of stay-cable and live load. Stay-cable stress and deck displacement were taken into account as constraints for the optimization problem. To optimize this existing bridge a metaheuristic algorithm named Jaya was used in the optimization process. 3D FEM of the selected bridge was repeatedly analyzed by using Open Applicable Programming Interface (OAPI) properties of SAP2000. To carry out the optimization process the developed program which integrates the Jaya algorithm and the required codes for calling SAP2000 is coded in MATLAB. At the end of the study, the total weight of the stay-cables was reduced more than 40% according to existing stay cables under loads taken into account.