• Title/Summary/Keyword: Probiotics

Search Result 974, Processing Time 0.028 seconds

Changes in gut microbiota with mushroom consumption (버섯 섭취와 장내 미생물 균총의 변화)

  • Kim, Eui-Jin;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.19 no.3
    • /
    • pp.115-125
    • /
    • 2021
  • Mushroom consumption causes changes in the immune system and gut microbiota via the actions of mushroom probiotic components. β-Glucan structure-related substances suppress secretion of inflammatory mediators, and induce macrophage activation, enhancing immunity and immune function. Substances other than directly useful components can be metabolized into short-chain fatty acids by gut microbiota. These short-chain fatty acids can then induce immunity, alleviating various diseases. Substances used to stimulate growth of health-promoting gut bacteria, thereby changing the gut microbiota community are defined to be probiotics. Probiotic altered intestinal microflora can prevent various types of bacterial infection from external sources, and can help to maintain immune system balance, thus preventing diseases. Research into beneficial components of Pleurotus eryngii, Lentinula edodes, Pleurotus ostreatus, Flammulina velutipes, Auricularia auricula-judae, and Agaricus bisporus, which are frequently consumed in Korea, changes in microbiota, changes in short-chain fatty acids, and correlations between consumption and health contribute to our understanding of the effects of dietary mushrooms on disease prevention and mitigation.

Probiotic Characteristics of Lactobacillus brevis KT38-3 Isolated from an Artisanal Tulum Cheese

  • Hacioglu, Seda;Kunduhoglu, Buket
    • Food Science of Animal Resources
    • /
    • v.41 no.6
    • /
    • pp.967-982
    • /
    • 2021
  • Probiotics are living microorganisms that, when administered in adequate amounts, provide a health benefit to the host and are considered safe. Most probiotic strains that are beneficial to human health are included in the "Lactic acid bacteria" (LAB) group. The positive effects of probiotic bacteria on the host's health are species-specific and even strain-specific. Therefore, evaluating the probiotic potential of both wild and novel strains is essential. In this study, the probiotic characteristics of Lactobacillus brevis KT38-3 were determined. The strain identification was achieved by 16S rRNA sequencing. API-ZYM test kits were used to determine the enzymatic capacity of the strain. L. brevis KT38-3 was able to survive in conditions with a broad pH range (pH 2-7), range of bile salts (0.3%-1%) and conditions that simulated gastric juice and intestinal juice. The percentage of autoaggregation (59.4%), coaggregation with E. coli O157:H7 (37.4%) and hydrophobicity were determined to be 51.1%, 47.4%, and 52.7%, respectively. L. brevis KT38-3 produced β-galactosidase enzymes and was able ferment lactose. In addition, this strain was capable of producing antimicrobial peptides against the bacteria tested, including methicillin and/or vancomycin-resistant bacteria. The cell-free supernatants of the strain had high antioxidant activities (DPPH: 54.9% and ABTS: 48.7%). Therefore, considering these many essential in vitro probiotic properties, L. brevis KT38-3 has the potential to be used as a probiotic supplement. Supporting these findings with in vivo experiments to evaluate the potential health benefits will be the subject of our future work.

Comparison of the quality Characteristics of Brown rice Glutinous rice Gochujang with different Enzymes (효소제를 달리한 현미 찹쌀 고추장의 품질특성 비교)

  • Jo, Ha-Yeong;Hong, Jae-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.49-55
    • /
    • 2021
  • The purpose of this study was to compare the quality characteristics of each brown rice glutinous rice red pepper paste prepared. In this study, brown rice, glutinous rice, and red pepper paste were prepared with various enzyme preparations. A 20-day study of the physicochemical and microbiological properties of each enzyme through the results process showed significant differences. In particular, brown rice red pepper paste manufactured using cozies purchased from Sunchang was functionally superior to rice cozies and bean cozies, with probiotics of 7.1-7.5×107 CFU/mL, lactobacillus of 1.9-2.2×103 CFU/mL, 48.67-52.30%, and 58.57-63.90%. When the results were combined, the composition of microorganisms and enzymes of fermented soybean paste purchased from Sunchang was not confirmed, but brown rice chili paste with nutritional and functional properties could be prepared compared to A.oryzae and A. kawachii.

Lactobacillus casei Zhang Prevents Jejunal Epithelial Damage to Early-Weaned Piglets Induced by Escherichia coli K88 via Regulation of Intestinal Mucosal Integrity, Tight Junction Proteins and Immune Factor Expression

  • Wang, Yuying;Yan, Xue;Zhang, Weiwei;Liu, Yuanyuan;Han, Deping;Teng, Kedao;Ma, Yunfei
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.863-876
    • /
    • 2019
  • Farm animals such as piglets are often affected by environmental stress, which can disturb the gut ecosystem. Antibiotics were commonly used to prevent diarrhea in weaned piglets, but this was banned by the European Union due to the development of antibiotic resistance. However, the use of probiotics instead of antibiotics may reduce the risk posed by pathogenic microorganisms and reduce the incidence of gastrointestinal diseases. Therefore, this study was conducted to investigate the effects of Lactobacillus casei Zhang on the mechanical barrier and immune function of early-weaned piglets infected using Escherichia coli K88 based on histomorphology and immunology. Fourteen-day-old weaned piglets were divided into a control group and experimental groups that were fed L. casei Zhang and infected with E. coli K88 with or without prefeeding and/or postfeeding of L. casei Zhang. The L. casei Zhang dose used was $10^7CFU/g$ diet. Jejunum segments were obtained before histological, immunohistochemical, and western blot analyses were performed. In addition, the relative mRNA expression of toll receptors and cytokines was measured. Piglets fed L. casei Zhang showed significantly increased jejunum villus height, villus height-crypt depth ratio, muscle thickness, and expression of proliferating cell nuclear antigen and tight junction proteins ZO-1 and occludin. The use of L. casei Zhang effectively reduced intestinal inflammation after infection. We found that L. casei Zhang feeding prevented the jejunum damage induced by E. coli K88, suggesting that it may be a potential alternative to antibiotics for preventing diarrhea in early-weaned piglets.

Effects of Queso Blanco Cheese Containing Bifidobacterium longum KACC 91563 on the Intestinal Microbiota and Short Chain Fatty Acid in Healthy Companion Dogs

  • Park, Ho-Eun;Kim, Ye Jin;Do, Kyung-Hyo;Kim, Jae Kwang;Ham, Jun-Sang;Lee, Wan-Kyu
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1261-1272
    • /
    • 2018
  • The effects of Queso Blanco cheese containing Bifidobacterium longum KACC 91563 was studied on the intestinal microbiota and short chain fatty acids (SCFAs) in healthy companion dogs. There were three experimental groups with five healthy dogs each: a control group, not fed with any cheese, and groups fed with Queso Blanco cheese with (QCB) or without B. longum KACC 91563 (QC) for 8 weeks. Fecal samples were collected 5 times before, during, and after feeding with cheese. Intestinal microbiota was analyzed using two non-selective agar plates (BL and TS) and five selective agar plates (BS, NN, LBS, TATAC, and MacConkey). SPME-GC-MS method was applied to confirm SCFAs and indole in dog feces. The six intestinal metabolites such as acetic, propionic, butyric, valeric, isovaleric acid and indole were identified in dog feces. Administration of B. longum KACC 91563 (QCB) for 8 weeks significantly increased the beneficial intestinal bacteria such as Bifidobacterium ($8.4{\pm}0.55$) and reduced harmful bacteria such as Enterobacteriaceae and Clostridium (p<0.05). SCFA such as acetic and propionic acid were significantly higher in the QCB group than in the Control group (p<0.05). In conclusion, this study demonstrates that administration of Queso Blanco cheese containing B. longum KACC 91563 had positive effects on intestinal microbiota and metabolites in companion dogs. These results suggest that Queso Blanco cheese containing B. longum KACC 91563 could be used as a functional food for companion animals and humans.

Comparison between DNA- and cDNA-based gut microbial community analyses using 16S rRNA gene sequences (16S rRNA 유전자 서열 분석을 이용한 DNA 및 cDNA 기반 장내 미생물 군집 분석의 비교)

  • Jo, Hyejun;Hong, Jiwan;Unno, Tatsuya
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.220-225
    • /
    • 2019
  • Studies based on microbial community analyses have increased in the recent decade since the development of next generation sequencing technology. Associations of gut microbiota with host's health are one of the major outcomes of microbial ecology filed. The major approach for microbial community analysis includes the sequencing of variable regions of 16S rRNA genes, which does not provide the information of bacterial activities. Here, we conducted RNA-based microbial community analysis and compared results obtained from DNA- and its cDNA-based microbial community analyses. Our results indicated that these two approaches differed in the ratio of Firmicutes and Bacteroidetes, known as an obesity indicator, as well as abundance of some key bacteria in gut metabolisms such as butyrate producers and probiotics strains. Therefore, cDNA-based microbial community may provide different insights regarding roles of gut microbiota compared to the previous studies where DNA-based microbial community analyses were performed.

Management of Acute Gastroenteritis in Children: A Survey among Members of the Korean Society of Pediatric Gastroenterology, Hepatology, and Nutrition

  • Seo, Ji-Hyun;Shim, Jung Ok;Choe, Byung-Ho;Moon, Jin Su;Kang, Ki-Soo;Chung, Ju-Young
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.5
    • /
    • pp.431-440
    • /
    • 2019
  • Purpose: No national survey has yet described the guidelines followed by Korean pediatricians to treat acute gastroenteritis (AGE). An online survey was performed to investigate the management of AGE followed by members of The Korean Society of Pediatric Gastroenterology, Hepatology, and Nutrition, and the results were compared between pediatric gastroenterologists (PG) and general pediatricians (GP). Methods: Questionnaires were sent to pediatricians between June 2 and 4, 2018 regarding the type of hospital, indications for admission, antiemetic and antidiarrheal drugs and antibiotics prescribed, and dietary changes advised. Results: Among the 400 pediatricians approached, 141 pediatricians (35.3%) responded to the survey. PG comprised 39% of the respondents and 72.7% worked at a tertiary hospital. Both PG and GP considered diarrhea or vomiting to be the primary symptom. The most common indication for hospitalization was severe dehydration (98.8%). Most pediatricians managed dehydration with intravenous fluid infusions (PG 98.2%, GP 92.9%). Antiemetics were prescribed by 87.3% of PG and 96.6% of GP. Probiotics to manage diarrhea were prescribed by 89.1% of PG and 100.0% of GP. Antibiotics were used in children with blood in diarrheal stool or high fever. Dietary changes were more commonly recommended by GP (59.3%) than by PG (27.3%) (p<0.05). Tests to identify etiological agents were performed primarily in hospitalized children. Conclusion: This survey assessing the management of pediatric AGE showed that the indications for admission and rehydration were similar between GP and PG. Drug prescriptions for diarrhea and dietary changes were slightly commonly recommended by GP than by PG.

Expression and Purification of Extracellular Solute-Binding Protein (ESBP) in Escherichia coli, the Extracellular Protein Derived from Bifidobacterium longum KACC 91563

  • Song, Minyu;Kim, Hyaekang;Kwak, Woori;Park, Won Seo;Yoo, Jayeon;Kang, Han Byul;Kim, Jin-Hyoung;Kang, Sun-Moon;Van Ba, Hoa;Kim, Bu-Min;Oh, Mi-Hwa;Kim, Heebal;Ham, Jun-Sang
    • Food Science of Animal Resources
    • /
    • v.39 no.4
    • /
    • pp.601-609
    • /
    • 2019
  • Bifidobacterium longum KACC 91563 secretes family 5 extracellular solute-binding protein via extracellular vesicle. In our previous work, it was demonstrated that the protein effectively alleviated food allergy symptoms via mast cell specific apoptosis, and it has revealed a therapeutic potential of this protein in allergy treatment. In the present study, we cloned the gene encoding extracellular solute-binding protein of the strain into the histidine-tagged pET-28a(+) vector and transformed the resulting plasmid into the Escherichia coli strain BL21 (DE3). The histidine-tagged extracellular solute-binding protein expressed in the transformed cells was purified using Ni-NTA affinity column. To enhance the efficiency of the protein purification, three parameters were optimized; the host bacterial strain, the culturing and induction temperature, and the purification protocol. After the process, two liters of transformed culture produced 7.15 mg of the recombinant proteins. This is the first study describing the production of extracellular solute-binding protein of probiotic bacteria. Establishment of large-scale production strategy for the protein will further contribute to the development of functional foods and potential alternative treatments for allergies.

Effect on Viability of Microencapsulated Lactobacillus rhamnosus with the Whey Protein-pullulan Gels in Simulated Gastrointestinal Conditions and Properties of Gels

  • Zhang, Minghao;Cai, Dan;Song, Qiumei;Wang, Yu;Sun, Haiyue;Piao, Chunhong;Yu, Hansong;Liu, Junmei;Liu, Jingsheng;Wang, Yuhua
    • Food Science of Animal Resources
    • /
    • v.39 no.3
    • /
    • pp.459-473
    • /
    • 2019
  • Lactobacillus rhamnosus GG (LGG) has low resistance to low pH and bile salt in the gastrointestinal juice. In this study, the gel made from whey protein concentrate (WPC) and pullulan (PUL) was used as the wall material to prepare the microencapsulation for LGG protection. The gelation process was optimized and the properties of gel were also determined. The results showed the optimal gel was made from 10% WPC and 8.0% PUL at pH 7.5, which could get the best protective effect; the viable counts of LGG were 6.61 Log CFU/g after exposure to simulated gastric juice (SGJ) and 9.40 Log CFU/g to simulated intestinal juice (SIJ) for 4 h. Sodium dodecyl sulphite polyacrylamide gel electrophoresis (SDS-PAGE) confirmed that the WPC-PUL gel had low solubility in SGJ, but dissolved well in SIJ, which suggested that the gel can protect LGG under SGJ condition and release probiotics in the SIJ. Moreover, when the gel has highest hardness and water-holding capacity, the viable counts of LGG were not the best, suggesting the relationship between the protection and the properties of the gel was non-linear.

Fermentative transformation of ginsenosides by a combination of probiotic Lactobacillus helveticus and Pediococcus pentosaceus (프로바이틱스 Lactobacillus helveticus와 Pediococcus pentosaceus의 조합에 의한 진세노사이드의 발효적 형질전환)

  • Palaniyandi, Sasikumar Arunachalam;Le, Bao;Kim, Jin-Man;Yang, Seung Hwan
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.436-441
    • /
    • 2018
  • Ginseng are native traditional herbs, which exhibit excellent pharmacological activities. Probiotic Lactobacillus helveticus KII13 and Pediococcus pentosaceus strain KID7 were used for ginsenoside transformation by fermenting crude ginseng extract to enhance minor gisenoside content. Thin-layer chromatography (TLC) analysis of fermented ginseng extract showed that the minor ginsenosides Rg3, Rh1, and Rh2 were main products after 5 days of fermentation. HPLC analysis was performed to quantify the major and minor ginsenosides. The Rg3 peak appeared on the 3rd day while the appearance of Rh2 peak and Rh1 peak were observed on the 5th day. The co-culture of L. helveticus KII13 and P. pentosaceus KID7 converted major ginsenosides (Rb1 and Rg1) into minor ginsenosides (Rg3, Rh2, and Rh1).