• Title/Summary/Keyword: Probiotic yeast

Search Result 59, Processing Time 0.022 seconds

Effects of Supplemention of Antibiotic, Probiotic and Yeast Culture of Performance and Meat Quality in Broiler Chicks (항생제, 생균제 및 효모제 첨가가 육계의 성장과 육질에 미치는 영향)

  • 박성진;유성오
    • Korean Journal of Poultry Science
    • /
    • v.27 no.3
    • /
    • pp.203-208
    • /
    • 2000
  • The present study was conducted to investigate the effects of dietary supplementions of 0.1% probiotic and 0.1% yeast culture on the growth performance and meat quality of broiler chicks. A total of 160 Arbor Acre broiler chicks were randomly allotted to 16 pens ; four pens per treatment and 10 birds per pen. Feeding trial lasted for 6 weeks. The results obtained are summerized as follows : The body weight gain and feed intake was slightly higher in group of broiler chick supplemented antibiotic than those of other treatment groups, but were not significantly different among treatments. The feed conversion were slightly lower in groups of broiler chick supplemented antibiotic and probiotic than those of other treatment groups, but were not significantly different among treatments. The pH of thigh musle was slightly higher in group of broiler chick supplemented probiotic than those of other treatment groups. Crude protein, crude fat and crude ash of thigh muscle were lower in groups of broiler chick supplemented probiltic and yeast culture than those of other treatment groups, but were not significantly different among treatments. The saturated fatty acid content of the thigh muscle was tende to be higher in group of broiler chick supplemented yeast culture, but the unsaturated fatty acid content was tende to be lower in group of broiler chick supplemented yeast culture than those of other treatment groups.

  • PDF

The Probiotic Effects of the Saccharomyces cerevisiae 28-7 Strain Isolated from Nuruk in a DSS-Induced Colitis Mouse Model

  • Lee, Jang Eun;Lee, Eunjung
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.877-884
    • /
    • 2022
  • Probiotics are microorganisms that can benefit host health when ingested in a live state, and lactic acid bacteria are the most common type. Among fungi, Saccharomyces boulardii (SB) is the only strain known to have a probiotic function with beneficial effects on colitis; however, information on other probiotic yeast strains is limited. Therefore, this study aimed to discover yeast strains expressing intestinal anti-inflammatory activities by exhibiting probiotic properties in dextran sodium sulfate (DSS)-induced colitis mice model. Nuruk (Korean traditional fermentation starter) containing various microbial strains was used as a source for yeast strains, and S. cerevisiae 28-7 (SC28-7) strain was selected with in vitro and in vivo characteristics to enable survival in the intestines. After 14 days of pretreatment with the yeast strains, DSS was co-administered for six days to induce colitis in mice. The results revealed that the disease activity index score was lowered by SC28-7 treatment compared to the DSS group, and the colon length and weight/length ratio were recovered in a pattern similar to that of the normal group. SC28-7 administration significantly reduced the secretion of pro-inflammatory cytokines in the serum and modified the mRNA expression of inflammatory cytokines (interleukin-1β, transforming growth factor-β, and interferon-γ) and proteins involved in gut barrier functions (mucin 2, mucin 3, zonula occludens-1, and occludin) in colon tissues. These results indicate that SC28-7 attenuates DSS-induced colon damage and inflammation, supporting its future use as a probiotic yeast for treating and preventing intestinal inflammatory diseases such as inflammatory bowel disease.

Optimization of Food Waste Fermentation for Probiotic Feed Production with Yeast Kluyveromyces marxianus

  • Lee, Ki-Young;Yu, Sung-Jin;Yu, Seung-Yeng
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2001.05b
    • /
    • pp.121-125
    • /
    • 2001
  • For the probiotic feed production, aerobic liquid fermentation of pulverized food wastes was attempted with a yeast Kluyveromyces marxianus. After grinding finely, optimal fermentation conditions of the substrate was investigated by shaking culture. The most active growth of the yeast was shown at solid content of 10%. The proper addition of urea(0.5g/l), o-phosphate(0.4g/l), molasses(4g/l), and yeast extract (1g/1) increased cell growth rate and viable cell count. For optimizing, the nutrients were all added to substrate and fermentation was carried in 2 litre jar fermenter. For the stimulation of hydrolyzing enzyme excretion, mixed culture with Aspersillus oryzae was also conducted. In 12 hours of fermentation, viable cell count of the yeast Kluyveromyces marxianus amounted to the number of 1.4 $\times$10$^{10}$ /1 in the culture medium.

  • PDF

Viability of Probiotic Bacteria in Yogurt Supplemented with Enzyme-Bioconverted Ginseng, Ascorbic Acid, and Yeast Extract (효소처리인삼, 아스코르브산, 효모추출물이 첨가된 요구르트에서 프로바이오틱 세균의 활성)

  • Choi, Suk-Ho;Lim, Young-Soon
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.57-68
    • /
    • 2019
  • The effects of yogurt supplementation with enzyme-bioconverted ginseng (EBG), ascorbic acid, and yeast extract on the bacterial counts of Streptococcus thermophilus, Lactobacillus acidophilus LA-5, and Bifidobacterium BB-12 were investigated to develop healthy yogurts with high probiotic counts during storage. In addition, the colors and viscosities of the yogurts were determined. EBG, ascorbic acid, and yeast extract did not affect S. thermophilus counts. EBG and ascorbic acid enhanced the viabilities of L. acidophilus LA-5 and Bifidobacterium BB-12 during storage. Yeast extract improved growth of L. acidophilus LA-5 and Bifidobacterium BB-12 during fermentation. EBG turned the yogurt into brown color. We conclude that supplementation of yogurt with EBG, ascorbic acid, and yeast extract may enhance its health-promoting functions by increasing the viability of probiotics, which can thus promote consumption of the yogurt.

Trehalose Protects the Probiotic Yeast Saccharomyces boulardii against Oxidative Stress-Induced Cell Death

  • Moon, Ji Eun;Heo, Wan;Lee, Sang Hoon;Lee, Suk Hee;Lee, Hong Gu;Lee, Jin Hyup;Kim, Young Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.54-61
    • /
    • 2020
  • Saccharomyces boulardii is the only probiotic yeast with US Food and Drug Administration approval. It is routinely used to prevent or treat acute diarrhea and other gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. The formation of reactive oxygen species (ROS), specifically H2O2 during normal aerobic metabolism, contributes to programmed cell death and represents a risk to the viability of the probiotic microbe. Moreover, a loss of viability reduces the efficacy of the probiotic treatment. Therefore, inhibiting the accumulation of ROS in the oxidant environment could improve the viability of the probiotic yeast and lead to more efficacious treatment. Here, we provide evidence that supplementation with a non-reducing disaccharide, namely trehalose, enhanced the viability of S. boulardii exposed to an oxidative environment by preventing metacaspase YCA1-mediated programmed cell death through inhibition of intracellular ROS production. Our results suggest that supplementation with S. boulardii together with trehalose could increase the viability of the organism, and thus improve its effectiveness as a probiotic and as a treatment for acute diarrhea and other gastrointestinal disorders.

Probiotic Properties of Lactic Acid Bacteria and Yeasts Isolated from Korean Traditional Food, Jeot-gal (젓갈로부터 분리된 젖산균 및 효모의 프로바이오틱 특성)

  • Kim Seon-Jae;Ma Seung-Jin;Kim Hag-Lyeol
    • Food Science and Preservation
    • /
    • v.12 no.2
    • /
    • pp.184-189
    • /
    • 2005
  • In order to select probiotics having both a high survival rate and an ability to inhibit virulent pathogens, we have screened lactic acid bacteria and yeasts from Jeot-gal to examine their resistance to artificial gastric and bile juice. After being introduced in the artificial gastric acid for 2 hr, the isolated lactic acid bacteria and yeast were incubated for 24 hrs in the artificial bile juice. In particular, the strain ML 36, ML 128, and ML 178 survived the longest during 2 hr incubation period in the artificial gastric acid. All 3 strains of lactic acid bacteria, and 2 strains of yeast demonstrated higher growth rates than control in the artificial bile. In addition, the antimicrobial activity of lactic acid bacteria and yeasts was investigated to determine their efficiency as probiotic organisms. The lactic acid bacteria inhibited Gram positive and negative bacteria, while the yeast was marginally inhibited.

Some Probiotic Properties of Some Lactic Acid Bacteria and Yeasts Isolated from Jeot-gal. (젓갈 프로바이오틱 생균의 내산성 및 내담즙 특성)

  • 이나경;김현욱;최신양;백현동
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.297-300
    • /
    • 2003
  • In order to select probiotics with a high survival rate in gut and the growth inhibition of virulent pathogens to human beings or animals, we have screened lactic acid bacteria and yeasts from Jeot-gal to assess resistance against the artificial gastric acid and bile juice. Lactic acid bacteria and yeasts isolated were incubated for 24 h in artificial bile juice after incubation for 2 h in artificial gastric acid. Especially, strain HW 161 and strain NK 181 showed the higher survival for 2 h incubation in artificial gastric acid. All of 3 strains of lactic acid bacteria and 2 strains of yeast were showed higher growth rate than the control in artificial bile. The antimicrobial activity of lactic acid bacteria and yeasts was also investigated to prove efficacy as probiotic organisms. Lactic acid bacteria were shown the inhibition of Gram positive and negative bacteria, but yeasts narrow inhibition.

Medium Optimization for the Production of Probiotic Lactobacillus acidophilus A12 Using Response Surface Methodology

  • Lee, Na-Kyoung;Park, Yeo-Lang;Choe, Ga-Jin;Chang, Hyo-Ihl;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.3
    • /
    • pp.359-364
    • /
    • 2010
  • Lactobacillus acidophilus A12 was isolated from chicken feces for use as an immunostimulating livestock probiotic. The purpose of this study was to optimize the production of L. acidophilus A12 using response surface methodology (RSM). Initially, the influence of growth medium was studied in terms of carbon sources (glucose, fructose, lactose, glycerol, sucrose, ethanol, and mannitol), nitrogen sources (beef extract, yeast extract, malt extract, and tryptone), and inorganic salts ($CaCl_2$, $MgSO_4$, $KH_2PO_4$, $(NH_4)_2SO_4$, $FeSO_4$, and NaCl). Through one factor-at-a time experiment, lactose, yeast extract, and $CaCl_2$ were determined to be the best sources of carbon, nitrogen, and inorganic salt, respectively. The optimum composition was found to be 17.7 g/L lactose, 18.6 g/L yeast extract, and 0.9 g/L $CaCl_2$. Under these conditions, a maximum cell density of 9.33 Log CFU/mL was produced, similar to the predicted value.

In vitro selection of lactic acid bacteria for probiotic use in pigs (양돈용 생균제 개발을 위한 유산균주 선발)

  • Byun, Jae-won;Kim, Gyung-tae;Bae, Hyoung-suk;Baek, Voung-jin;Lee, Wan-kyu
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.4
    • /
    • pp.701-706
    • /
    • 2000
  • This study was carried out to select the lactic acid bacteria(Lactobacillus, Streptococcus and Bifidobacterium) and yeast for probiotic use in pigs. Acid-tolerant 536 strains were isolated from the feces of 30 pigs. To select useful strains, the first screened strains were treated with strong acid solution(pH 2.5 to 3.0) for 3 hours and subsequentely treated with the anaerobic diluent solution containing 0.15% Oxgall for 3 hours. Among these strains, 151 strains showed strong tolerance to both acid and bile. Lactobacillus and Streptococcus tolerant to the acid and bile were treated with heat at $80^{\circ}C$ for 15 min, and at $70^{\circ}C$ for 5 min in Bifidobacterium and yeast. As a result of heat treatment, 38 strains were obtained as heat-tolerant strains. All of heat-tolerant strains were tested for antibiotic resistance against virginiamycin, sulfathiazole, aureomycin, neomycin, linsmycin, tiamulin and ASP250 which were used as feed additives for growth promotion in pigs. Finally, one strain each from Lactobacillus, Streptococcus, Bifidobacterium and yeast that showed resistance to acid, bile, heat and antibiotics was selected for probiotic use in pigs.

  • PDF

Influence of Agitation Speed on Cell Growth in the Aerobic Yeast Fermentation of Pulverized Liquid Food Wastes for Probiotic Feed Production (남은 음식물로 호기적 액상효모발효를 이용한 생균사료를 생산할 때 생균수에 대한 교반 속도의 영향)

  • Yu, Sung-Jin;Yu, Seung-Yeung;Lee, Ki-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.4
    • /
    • pp.99-104
    • /
    • 2001
  • The influence of agitation speed on the yeast growth was investigated in the production of probiotic feed from pulverized liquified food wastes by aerobic fermentation. A yeast Kluyvermyces marxianus was selected through a preliminary screening. The yeast was cultured by 2liter jar fermenter. in 10% solid(w/v) substrate of liquified food waste at $35^{\circ}C$ with each different agitation speed of 500, 900 and 1200 rpm. For the acceleration of enzyme excretion mixed culture with Aspergillus oryzae was also attempted and the results were compared to those of single culture. As results the viable cell number was increased by increasing agitation speed. But it showed highest value in 900rpm and then decreased in 1200rpm. The mixed culture increased amylase activity and growth rate, but did not seem to enhance the highest viable cell count in the final fermentation stage.

  • PDF