• 제목/요약/키워드: Probiotic properties

검색결과 201건 처리시간 0.027초

향신료와 프로폴리스에 대한 한국형 유산균의 안정성 (Stability Traits of Probiotics Isolated from Korean on Spices and Propolis)

  • 이도경;박재은;김경태;도명진;정명준;이과수;김진응;하남주
    • 미생물학회지
    • /
    • 제50권3호
    • /
    • pp.216-222
    • /
    • 2014
  • 건강에 유익한 작용을 하는 프로바이오틱스는 까다로운 미생물로 다양한 환경조건에 매우 민감하여, 이들의 생존율은 항생제, 노화, 스트레스와 식이 등과 같은 요인들에 크게 영향을 받는다. 이에 본 연구에서는 한국 식단에서 많이 이용되고 있는 항균활성이 있는 각종 향신료(마늘, 생강, 파, 양파, 청양고추, 홍고추)와 프로폴리스가 한국인의 장에서 분리한 유산균주의 생존율에 미치는 영향을 조사하였다. 그 결과 대부분의 한국형 유산균주들은 모든 향신료와 프로폴리스에 저항성을 나타냈으며, 심지어 일부 한국형 유산균주(Bifidobacterium lactis, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus, Streptococcus thermophiles)는 특정 향신료 또는 프로폴리스에 의해 증식률이 증가하였다. 하지만 이와 다르게 대부분의 외래종 유산균주는 다양한 향신료와 프로폴리스에 의해 증식률이 감소 하였으며, 일부 외래종 유산균주(L. helveticus, S. thermophiles)는 특정 향신료에 의해 증식률이 크게 감소 하였다. 마찬가지로 각 향신료와 프로폴리스가 한국형 유산균주만 사용하여 제조된 프로바이오틱스 제품과 외래종 유산균주가 사용된 해외 프로바이오틱스 제품에 미치는 영향을 조사한 결과 한국형 프로바이오틱스 제품은 모두 큰 영향을 받지 않았다. 하지만 해외 프로바이오틱스 제품은 마늘, 양파, 파, 프로폴리스에 의해 크게 감소하는 경향을 나타냈다. 따라서 본 연구결과, 한국인의 장에서 분리한 유산균은 대체적으로 항균활성이 있는 각종 향신료에 저항성을 가지는 생존력이 강한 균주로 판단되며, 한국인의 장에 적합한 유산균으로 사료된다.

전통식품 유래 유산균의 해조류 발효 및 Probiotic 특성 (Seaweed Fermentation and Probiotic Properties of Lactic Acid Bacteria Isolated from Korean Traditional Foods)

  • 김진학;박나영;이신호
    • 한국식품영양과학회지
    • /
    • 제45권10호
    • /
    • pp.1481-1487
    • /
    • 2016
  • 해조류의 발효가 가능하고 probiotic 특성이 우수한 유산균을 분리 선발한 후 이들의 미역과 다시마 발효능을 검토하였다. 미역 및 다시마 발효가 가능한 균주를 김치 젓갈, 된장으로부터 331 균주를 순수 분리하여 해조류 구성 다당(alginate, cellulose) 분해능, 균의 생육, 항균 활성 등을 비교 검토한 결과 4균주(stain No. 162, 164, 192, 196)가 우수하였다. 선발 균주 모두 인공위액, 인공담즙액, NaCl에 높은 생존율을 나타내었고 이들 4균주 중 No. 192가 가장 우수하였으며 Enterococcus faecium으로 동정되었다. 미역과 다시마를 이용하여 선발 유산균을 배양한 결과 No. 192 균주가 발효특성이 가장 양호하였으며, No. 162, 164, 196 균주도 양호하였다. 선발 유산균을 이용한 미역과 다시마에서 성장이 가능하였으며 발효 후 미역과 다시마 발효물의 항산화 활성이 증진되었다.

Probiotic and Antioxidant Properties of Novel Lactobacillus brevis KCCM 12203P Isolated from Kimchi and Evaluation of Immune-Stimulating Activities of Its Heat-Killed Cells in RAW 264.7 Cells

  • Song, Myung Wook;Jang, Hye Ji;Kim, Kee-Tae;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권12호
    • /
    • pp.1894-1903
    • /
    • 2019
  • The purpose of this study was to determine the probiotic properties of Lactobacillus brevis KCCM 12203P isolated from the Korean traditional food kimchi and to evaluate the antioxidative activity and immune-stimulating potential of its heat-killed cells to improve their bio-functional activities. Lactobacillus rhamnosus GG, which is a representative commercial probiotic, was used as a comparative sample. Regarding probiotic properties, L. brevis KCCM 12203P was resistant to 0.3% pepsin with a pH of 2.5 for 3 h and 0.3% oxgall solution for 24 h, having approximately a 99% survival rate. It also showed strong adhesion activity (6.84%) onto HT-29 cells and did not produce β-glucuronidase but produced high quantities of leucine arylamidase, valine arylamidase, β-galactosidase, and N-acetyl-β-glucosaminidase. For antioxidant activity, it appeared that viable cells had higher radical scavenging activity in the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay, while in the 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay, heat-killed cells had higher antioxidant activity. Additionally, L. brevis KCCM 12203P showed higher lipid oxidation inhibition ability than L. rhamnosus GG; however, there was no significant difference (p < 0.05) between heat-killed cells and control cells. Furthermore, heat-killed L. brevis KCCM 12203P activated RAW 264.7 macrophage cells without cytotoxicity at a concentration lower than 108 CFU/ml and promoted higher gene expression levels of inducible nitric oxide synthase, interleukin-1β, and interleukin-6 than L. rhamnosus GG. These results suggest that novel L. brevis KCCM 12203P could be used as a probiotic or applied to functional food processing and pharmaceutical fields for immunocompromised people.

Screening and Characterization of Lactic Acid Bacteria Strains with Anti-inflammatory Activities through in vitro and Caenorhabditis elegans Model Testing

  • Lee, Hye Kyoung;Choi, Sun-Hae;Lee, Cho Rong;Lee, Sun Hee;Park, Mi Ri;Kim, Younghoon;Lee, Myung-Ki;Kim, Geun-Bae
    • 한국축산식품학회지
    • /
    • 제35권1호
    • /
    • pp.91-100
    • /
    • 2015
  • The present study was conducted to screen candidate probiotic strains for anti-inflammatory activity. Initially, a nitric oxide (NO) assay was used to test selected candidate probiotic strains for anti-inflammatory activity in cultures of the murine macrophage cell line, RAW 264.7. Then, the in vitro probiotic properties of the strains, including bile tolerance, acid resistance, and growth in skim milk media, were investigated. We also performed an in vitro hydrophobicity test and an intestinal adhesion assay using Caenorhabditis elegans as a surrogate in vivo model. From our screening, we obtained 4 probiotic candidate lactic acid bacteria (LAB) strains based on their anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cell cultures and the results of the in vitro and in vivo probiotic property assessments. Molecular characterization using 16S rDNA sequencing analysis identified the 4 LAB strains as Lactobacillus plantarum. The selected L. plantarum strains (CAU1054, CAU1055, CAU1064, and CAU1106) were found to possess desirable in vitro and in vivo probiotic properties, and these strains are good candidates for further investigations in animal models and human clinical studies to elucidate the mechanisms underlying their anti-inflammatory activities.

Candidate of Probiotic Bacteria Isolated from Several Jeotgals: Korean Traditional Fermented Seafoods

  • Cho, Gyu-Sung;Do, Hyung-Ki;Bae, Chae-Yoon;Cho, Gyu-Sup;Whang, Cher-Won;Shin, Heuyn-Kil
    • Preventive Nutrition and Food Science
    • /
    • 제11권2호
    • /
    • pp.140-145
    • /
    • 2006
  • Seventy eight bacterial strains were isolated from several jeotgals using MRS and M 17 agar media. The probiotic properties such as tolerance of extreme growth condition, production of antimicrobial compound, production of hydrogen peroxide, and enzymatic activity of bile salt hydrolase were investigated. DHK 4, 10, 21 and 74 strains showed_a strong tolerance property against extreme conditions such as low pH and 0.5% oxgall-supplemented medium. DHK 10 and 47 strains produced hydrogen peroxide on TMB agar plate. DHK 8 and 10 strains produced antimicrobial compounds onto MRS agar against E. facalis. DHK 4, 6, 21, 29, 33, 63 and 87 strains had high activities of bile salt hydrolase. Especially, DHK 10 displayed a strong probiotic candidate; the abilities to produce the antimicrobial compound, hydrogen peroxide, and bile salt hydrolase. All these strains are assumed to be useful probiotic candidates. Among 78, twenty seven strains which have probiotic properties were tentatively identified by 16S rRNA sequencing. Among them, 7 Lactobacillus spp., 6 Leuconosotoc spp., 2 Weisella spp., 1 Pediococcus sp., 1 Staphylococcus sp., 1 Enterococcus sp. and 2 Streptococcus spp. were tentatively identified.

Development and evaluation of probiotic delivery systems using the rennet-induced gelation of milk proteins

  • Ha, Ho-Kyung;Hong, Ji-Young;Ayu, Istifiani Lola;Lee, Mee-Ryung;Lee, Won-Jae
    • Journal of Animal Science and Technology
    • /
    • 제63권5호
    • /
    • pp.1182-1193
    • /
    • 2021
  • The aims of this study were to develop a milk protein-based probiotic delivery system using a modified rennet-induced gelation method and to determine how the skim milk powder concentration level and pH, which can affect the rennet-induced intra- and inter-molecular association of milk proteins, affect the physicochemical properties of the probiotic delivery systems, such as the particle size, size distribution, encapsulation efficiency, and viability of probiotics in simulated gastrointestinal tract. To prepare a milk protein-based delivery system, skim milk powder was used as a source of milk proteins with various concentration levels from 3 to 10% (w/w) and rennet was added to skim milk solutions followed by adjustment of pH from 5.4 or 6.2. Lactobacillus rhamnosus GG was used as a probiotic culture. In confocal laser scanning microscopic images, globular particles with a size ranging from 10 ㎛ to 20 ㎛ were observed, indicating that milk protein-based probiotic delivery systems were successfully created. When the skim milk powder concentration was increased from 3 to 10% (w/w), the size of the delivery system was significantly (p < 0.05) increased from 27.5 to 44.4 ㎛, while a significant (p < 0.05) increase in size from 26.3 to 34.5 ㎛ was observed as the pH was increased from 5.4 to 6.4. An increase in skim milk powder concentration level and a decrease in pH led to a significant (p < 0.05) increase in the encapsulation efficiency of probiotics. The viability of probiotics in a simulated stomach condition was increased when probiotics were encapsulated in milk protein-based delivery systems. An increase in the skim milk powder concentration and a decrease in pH resulted in an increase in the viability of probiotics in simulated stomach conditions. It was concluded that the protein content by modulating skim milk powder concentration level and pH were the key manufacturing variables affecting the physicochemical properties of milk protein-based probiotic delivery systems.

Use of Glucose Oxidase Immobilized on Magnetic Chitosan Nanoparticles in Probiotic Drinking Yogurt

  • Ali Afjeh, Maryam Ein;Pourahmad, Rezvan;Akbari-adergani, Behrouz;Azin, Mehrdad
    • 한국축산식품학회지
    • /
    • 제39권1호
    • /
    • pp.73-83
    • /
    • 2019
  • The aim of this study was to investigate the effect of glucose oxidase (GOX) immobilized on magnetic chitosan nanoparticles (MCNP) on the viability of probiotic bacteria and the physico-chemical properties of drinking yogurt. Different concentrations (0, 250, and 500 mg/kg) of free and immobilized GOX were used in probiotic drinking yogurt samples. The samples were stored at $4^{\circ}C$ for 21 d. During storage, reduction of the number of probiotic bacteria in the samples with enzyme was lower than the control sample (without enzyme). The sample containing 500 mg/kg immobilized enzyme had the highest number of Bifidobacterium lactis and Lactobacillus acidophilus. The samples containing immobilized enzyme had lower acidity than other samples. Moreover, moderate proteolytic activity and enough contents of flavor compounds were observed in these samples. It can be concluded that use of immobilized GOX is economically more feasible because of improving the viability of probiotic bacteria and the physico-chemical characteristics of drinking yogurt.

Probiotic Characteristics of Lactobacillus brevis KT38-3 Isolated from an Artisanal Tulum Cheese

  • Hacioglu, Seda;Kunduhoglu, Buket
    • 한국축산식품학회지
    • /
    • 제41권6호
    • /
    • pp.967-982
    • /
    • 2021
  • Probiotics are living microorganisms that, when administered in adequate amounts, provide a health benefit to the host and are considered safe. Most probiotic strains that are beneficial to human health are included in the "Lactic acid bacteria" (LAB) group. The positive effects of probiotic bacteria on the host's health are species-specific and even strain-specific. Therefore, evaluating the probiotic potential of both wild and novel strains is essential. In this study, the probiotic characteristics of Lactobacillus brevis KT38-3 were determined. The strain identification was achieved by 16S rRNA sequencing. API-ZYM test kits were used to determine the enzymatic capacity of the strain. L. brevis KT38-3 was able to survive in conditions with a broad pH range (pH 2-7), range of bile salts (0.3%-1%) and conditions that simulated gastric juice and intestinal juice. The percentage of autoaggregation (59.4%), coaggregation with E. coli O157:H7 (37.4%) and hydrophobicity were determined to be 51.1%, 47.4%, and 52.7%, respectively. L. brevis KT38-3 produced β-galactosidase enzymes and was able ferment lactose. In addition, this strain was capable of producing antimicrobial peptides against the bacteria tested, including methicillin and/or vancomycin-resistant bacteria. The cell-free supernatants of the strain had high antioxidant activities (DPPH: 54.9% and ABTS: 48.7%). Therefore, considering these many essential in vitro probiotic properties, L. brevis KT38-3 has the potential to be used as a probiotic supplement. Supporting these findings with in vivo experiments to evaluate the potential health benefits will be the subject of our future work.

Probiotic Properties of Lactobacillus brevis KU200019 and Synergistic Activity with Fructooligosaccharides in Antagonistic Activity against Foodborne Pathogens

  • Kariyawasam, Kariyawasam Majuwana Gamage Menaka Menike;Yang, Seo Jin;Lee, Na-Kyoung;Paik, Hyun-Dong
    • 한국축산식품학회지
    • /
    • 제40권2호
    • /
    • pp.297-310
    • /
    • 2020
  • This study aims to evaluate the probiotic properties of Lactobacillus brevis (L. brevis) KU200019 and the synergistic activity with prebiotics on antimicrobial activity, and the potential application as an adjunct culture in fermented dairy products. The commercial strain, L. brevis ATCC 14869 was used as reference strain. L. brevis KU200019 was showed higher viability in simulated gastric (99.38±0.21%) and bile (115.10±0.13%) conditions compared to reference strain. L. brevis KU200019 exhibited antimicrobial activity against various foodborne pathogens. The supplementation of fructooligosaccharides (FOS) enhanced viability of lactic acid bacteria (>8 Log CFU/mL) and antioxidant activity [2,2-diphenyl-2-picrylhydrazyl radical assay (DPPH) assay, 31.23±1.14%; 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay, 38.82±1.46%] in fermented skim milk during refrigerated storage. L. brevis KU200019 was distinguished from the reference strain by its higher probiotic potential, antimicrobial activity, and higher antioxidant activity in fermented milk. Therefore, L. brevis KU200019 with FOS was demonstrated promising properties for further application in fermented dairy products with enhanced safety and quality.

프로바이오틱스 안전성 문제 개선을 위한 안전성 평가방법의 제안 (Suggestion of a Safety Evaluation Procedure to Improve Probiotic Safety)

  • 김세정;윤요한;오세종
    • Journal of Dairy Science and Biotechnology
    • /
    • 제38권2호
    • /
    • pp.99-111
    • /
    • 2020
  • Probiotics are actively being studied for their efficacious anticancer, anticholesterol, and antidiabetic properties. As novel probiotic strains are being developed continuously, new strain-specific safety issues may be reported. Therefore, a procedure for the safety evaluation of probiotic strains is needed. In this study, we investigated the current status of domestic and foreign guidelines for the evaluation of safety of probiotics and suggested a general probiotic safety evaluation process. In other countries, the guidelines for probiotic evaluation are provided and managed separately. However, in Korea, general guidelines are provided regarding the use of functional ingredients, and specific guidelines for the use of probiotics are lacking. A review step based on the characteristics of the probiotics has been introduced in the procedure for safety evaluation of probiotics. Additionally, it has been suggested that the safety evaluation process should consider the results of the functional and genomic analysis for strain identification. Moreover, the factors to be evaluated are presented separately for the notified and non-notified strains. The suggested evaluation procedure may ensure the safety of probiotics, thereby promoting enhanced utilization of probiotics as functional products.