• 제목/요약/키워드: Probiotic activity

검색결과 330건 처리시간 0.02초

Protective Effects of a Novel Probiotic Strain of Lactobacillus plantarum JSA22 from Traditional Fermented Soybean Food Against Infection by Salmonella enterica Serovar Typhimurium

  • Eom, Jeong Seon;Song, Jin;Choi, Hye Sun
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.479-491
    • /
    • 2015
  • Lactobacillus species have been shown to enhance intestinal epithelial barrier function, modulate host immune responses, and suppress the growth of pathogenic bacteria, yeasts, molds, and viruses. Thus, lactobacilli have been used as probiotics for treating various diseases, including intestinal disorders, and as biological preservatives in the food and agricultural industries. However, the molecular mechanisms used by lactobacilli to suppress pathogenic bacterial infections have been poorly characterized. We previously isolated Lactobacillus plantarum JSA22 from buckwheat sokseongjang, a traditional Korean fermented soybean food, which possessed high enzymatic, fibrinolytic, and broad-spectrum antimicrobial activity against foodborne pathogens. In this study, we investigated the effects of L. plantarum JSA22 on the growth of S. Typhimurium and S. Typhimurium-induced cytotoxicity by stimulating the host immune response in intestinal epithelial cells. The results showed that coincubation of S. Typhimurium and L. plantarum JSA22 with intestinal epithelial cells suppressed S. Typhimurium infection, S. Typhimurium-induced NF-κB activation, and IL-8 production, and lowered the phosphorylation of both Akt and p38. These data indicated that L. plantarum JSA22 has probiotic properties, and can inhibit S. Typhimurium infection of intestinal epithelial cells. Our findings can be used to develop therapeutic and prophylactic agents against pathogenic bacteria.

Enhancing the Viability Rate of Probiotic by Co-Encapsulating with Prebiotic in Alginate Microcapsules Supplemented to Cupcake Production

  • Dong, Lieu My;Luan, Nguyen Thien;Thuy, Dang Thi Kim
    • 한국미생물·생명공학회지
    • /
    • 제48권2호
    • /
    • pp.113-120
    • /
    • 2020
  • The objective of the study was to assess the survival of microencapsulated Lactobacillus plantarum ATCC8014 produced using the emulsion technique in alginate gel combined with pectin and maltodextrin components. The microcapsules were then added to cupcake dough that was further baked at 200℃ for 12 min. The viability of L. plantarum was assessed during baking and the 10 days of storage at 4℃ as well as in simulated gastrointestinal conditions. In addition, yeast-mold and water activity were investigated. After baking, the samples with microencapsulated L. plantarum contained more than 5 log CFU/g, which was higher compared to the bacterial concentration of the control samples. The concentration of L. plantarum was more than 6 logs CFU/g after the end of the storage; therefore, the probiotic functioned as a biopreservative in the cake. The prebiotic component strengthened the microcapsules network and helped protect the viability of L. plantarum in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) media. The results show that the addition of L. plantarum microencapsules did not affect the sensory scores of the cupcake while ensuring the viability of the probiotic during baking and storing.

양돈용 생균제 균주개발을 위한 유산균주 선발 (In vitro selection of lactic acid bacteria for probiotic use in pig)

  • 유지숙;한선경;신명수;이완규
    • 한국동물위생학회지
    • /
    • 제32권1호
    • /
    • pp.33-41
    • /
    • 2009
  • In order to develop probiotic strain for pigs, Lactobacillus spp. (527 isolates), Streptococcus spp. (95 isolates) and Bifidobacterium spp. (25 isolates) were isolated from the feces of 35 pigs. These isolates were tested through in vitro experiment such as acid tolerance at pH 2.0 (Lactobacillus spp. and Streptococcus spp.) or pH 3.0 (Bifidobacterium spp.), bile tolerance in MRS broth containing 0.3% (w/v) Oxgall, heat resistance at $70^{\circ}C$ and $80^{\circ}C$ for 5 min, antibiotic resistance, antimicrobial activity against pathogenic bacteria and Caco-2 cell adherence assay. Finally ten most superior strain (5 Lactobacillus spp. strain, 3 Bifidobacterium spp. strain and 2 Streptococcus spp. strain) were selected as potential candidate for probiotic use in pig industry. It could be used as an alternative to antibiotics in feed additives.

Complete genome sequence of Lactiplantibacillus plantarum ST, a potential probiotic strain with antibacterial properties

  • Yang, Shujuan;Deng, Chenglin;Li, Yao;Li, Weicheng;Wu, Qiong;Sun, Zhihong;Cao, Zhenhui;Lin, Qiuye
    • Journal of Animal Science and Technology
    • /
    • 제64권1호
    • /
    • pp.183-186
    • /
    • 2022
  • Lactiplantibacillus plantarum (L. plantarum) ST was isolated from De'ang pickled tea in Yunnan Province, China. The genomes of strain ST were fully sequenced and analyzed using the PacBio RS II sequencing system. Our previous study has shown that L. plantarum ST is a potential probiotic strain. It had strong tolerance in the simulated artificial gastrointestinal tract, and in the antagonism tests, this strain showed strong antibacterial activity. Therefore, as a probiotic, it may be used in animal breeding. L. plantarum ST genome was composed of 1 circular chromosome and 7 plasmids. The length of the whole genome was 3320817 bp, and the annular chromosome size was 3058984 bp, guanine + cytosine (G ± C) content (%) was 44.76%, which contained 2945 protein-coding sequences (CDS). This study will contribute to a further comprehensive understanding of L. Plantarum ST at the genomic level and provide a theoretical basis for its future application in animal breeding.

Prebiotic Potential of Xylooligosaccharides Derived from Corn Cobs and Their In Vitro Antioxidant Activity When Combined with Lactobacillus

  • Yu, Xiuhua;Yin, Jianyuan;Li, Lin;Luan, Chang;Zhang, Jian;Zhao, Chunfang;Li, Shengyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1084-1092
    • /
    • 2015
  • In the present work, the in vitro prebiotic activity of xylooligosaccharides (XOS) derived from corn cobs combined with Lactobacillus plantarum, a probiotic microorganism, was determined. These probiotics exhibited different growth characteristics depending on strain specificity. L. plantarum S2 cells were denser and their growth rates were higher when cultured on XOS. Acetate was found to be the major short-chain fatty acid produced as the end-product of fermentation, and its amount varied from 1.50 to 1.78 mg/ml. The antimicrobial activity of XOS combined with L. plantarum S2 was determined against gastrointestinal pathogens. The results showed that XOS proved to be an effective substrate, enhancing antimicrobial activity for L. plantarum S2. In vivo evaluation of the influence of XOS and L. plantarum S2, used both alone and together, on the intestinal microbiota in a mouse model showed that XOS combined with L. plantarum S2 could increase the viable lactobacilli and bifidobacteria in mice feces and decrease the viable Enterococcus, Enterobacter, and Clostridia spp. Furthermore, in the in vitro antioxidant assay, XOS combined with L. plantarum S2 possessed significant 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis, and superoxide anion radical-scavenging activities, and the combinations showed better antioxidant activity than either XOS or L. plantarum S2 alone.

Assessment of Characteristics and Functional Properties of Lactobacillus Species Isolated from Kimchi for Dairy Use

  • Baick, Seung-Chun;Kim, Cheol-Hyun
    • 한국축산식품학회지
    • /
    • 제35권3호
    • /
    • pp.339-349
    • /
    • 2015
  • The objective of this study was to identify lactic acid bacteria (LAB) isolated from kimchi and to evaluate its characteristics and functional properties for application in fermented dairy products as a probiotic or commercial starter culture. Eight stains isolated from kimchi were selected through an investigation of phenotypic characteristics. Two strains (DK211 and DK303) were identified as Lactobacillus plantarum, another two (DK207 and DK215) as Lactobacillus paracasei, and one (DK301) as Lactobacillus sakei. The remaining three strains were identified as species of Weissella. All selected Lactobacillus strains had acid and bile tolerance, even though there was wide variation in the ability of each strain. DK303 showed a remarkably higher proteolytic activity. There were no significant differences in β-galactosidase activity among the tested strains, except that DK301 showed no activity. Auto-aggregation varied between 82.1 and 90.0%, and hydrophobicity values ranged from 0.5 to 51.6%.The strongest auto-aggregation and hydrophobicity were observed in DK211. All selected strains showed better 1,1-diphenyl-2-picrylhydrzyl (DPPH) scavenging activity than commercial strains. DK211, DK215, DK301, and DK303 had effective inhibitory activity against all pathogens tested except E. coli. When selected strains were used for yogurt preparation as a single starter culture, the time required to reach target titratable acidity (0.9) was 11-12 h. The yogurt fermented with DK211 had favorable panelists ratings for most sensory attributes, which were comparable with yogurt fermented with a commercial strain. The results suggest that strains isolated from kimchi could be potential probiotic and starter cultures for use in yogurt manufacturing.

Screening of Probiotic Activities of Lactobacilli Strains Isolated from Traditional Tibetan Qula, A Raw Yak Milk Cheese

  • Zhang, Bei;Wang, Yanping;Tan, Zhongfang;Li, Zongwei;Jiao, Zhen;Huang, Qunce
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권10호
    • /
    • pp.1490-1499
    • /
    • 2016
  • In this study, 69 lactobacilli isolated from Tibetan Qula, a raw yak milk cheese, were screened for their potential use as probiotics. The isolates were tested in terms of: Their ability to survive at pH 2.0, pH 3.0, and in the presence of 0.3% bile salts; tolerance of simulated gastric and intestinal juices; antimicrobial activity; sensitivity against 11 specific antibiotics; and their cell surface hydrophobicity. The results show that out of the 69 strains, 29 strains (42%) had survival rates above 90% after 2 h of incubation at pH values of 2.0 or 3.0. Of these 29 strains, 21 strains showed a tolerance for 0.3% bile salt. Incubation of these 21 isolates in simulated gastrointestinal fluid for 3 h revealed survival rates above 90%; the survival rate for 20 of these isolates remained above 90% after 4 h of incubation in simulated intestinal fluid. The viable counts of bacteria after incubation in simulated gastric fluid for 3 h and simulated intestinal fluid for 4 h were both significantly different compared with the counts at 0 h (p<0.001). Further screening performed on the above 20 isolates indicated that all 20 lactobacilli strains exhibited inhibitory activity against Micrococcus luteus ATCC 4698, Bacillus subtilis ATCC 6633, Listeria monocytogenes ATCC 19115, and Salmonella enterica ATCC 43971. Moreover, all of the strains were resistant to vancomycin and streptomycin. Of the 20 strains, three were resistant to all 11 elected antibiotics (ciprofloxacin, erythromycin, tetracycline, penicillin G, ampicillin, streptomycin, polymyxin B, vancomycin, chloramphenicol, rifampicin, and gentamicin) in this study, and five were sensitive to more than half of the antibiotics. Additionally, the cell surface hydrophobicity of seven of the 20 lactobacilli strains was above 70%, including strains Lactobacillus casei 1,133 (92%), Lactobacillus plantarum 1086-1 (82%), Lactobacillus casei 1089 (81%), Lactobacillus casei 1138 (79%), Lactobacillus buchneri 1059 (78%), Lactobacillus plantarum 1141 (75%), and Lactobacillus plantarum 1197 (71%). Together, these results suggest that these seven strains are good probiotic candidates, and that tolerance against bile acid, simulated gastric and intestinal juices, antimicrobial activity, antibiotic resistance, and cell surface hydrophobicity could be adopted for preliminary screening of potentially probiotic lactobacilli.

잠재적 생균제로서 식물 젖산균의 분리 및 특성 (Isolation and Characterization of Plant-Derived Lactic Acid Bacteria as Potential Probiotic)

  • 김정도;박성보;이나리;정진하;이희섭;황대연;이종섭;정성윤;손홍주
    • 한국미생물·생명공학회지
    • /
    • 제39권3호
    • /
    • pp.308-312
    • /
    • 2011
  • Plant lactic acid bacteria were isolated from plant-associated fermentative foods and crops, and their probiotic properties were investigated. Isolates K27 and O2 were isolated from Kimchi and onion, and identified as Lactobacillus plantarum on the basis of 16S rRNA gene analysis. The two strains were highly resistant to acid (an MRS broth at pH 2.5), where the survival rates of L. plantarum K27 and L. plantarum O2 were 90.2% and 97.3%, respectively. L. plantarum K27 and L. plantarum O2 also showed high bile resistance to 0.5% oxgall, with a more than 70% survival rate. They showed an inhibitory effect against pathogenic strains of Escherichia coli KCCM 40880 and Pseudomonas aeruginosa ATCC 10145. The antibacterial effect of the two strains was probably due to the presence of lactic acid. ACE inhibitory activities of the two strains ranged from 72.8% to 80.6% in MRS broth. Notably, the two strains showed high ACE inhibitory activity (89.2~98.2%) in MRS broth containing 10% skim milk. Antioxidant activity was tested by DPPH radical scavenging activity, with antioxidant activities of the strains being in the range of 56.8~61.5%. The results obtained in this study suggest that L. plantarum K27 and L. plantarum O2 may be potential probiotic starter cultures with applications with fermentative products.

베트남인 분변 및 김치로부터 분리된 유산균의 프로바이오틱스 기능성 연구 (Probiotic Properties of Lactic Acid Bacteria isolated from Feces and Kimchi)

  • 신현수;유성호;장진아;원지영;김철현
    • Journal of Dairy Science and Biotechnology
    • /
    • 제35권4호
    • /
    • pp.255-261
    • /
    • 2017
  • 본 연구에서는 베트남인의 분변으로부터 분리한 유산균의 probiotics 특성을 연구하기 위해 형태학적, 생화학적 특성조사 및 내산성, 내담즙성이 뛰어난 6개의 균주를 선별하고 동정하였다. 6개의 균주의 16S rRNA 분석 결과, L. acidophilus V4, L. plantarum V7, V9, V10, V11, V12의 2개 group으로 동정되었다. 베트남인의 분변으로부터 분리한 유산균은 pH 1.5, 2.0, 3.0의 산성 및 담즙산(0.3% oxgall) 조건에서 내산성과 내담즙성을 측정한 결과, V4, V7, V9, V11, V12의 5개 균주에서 70% 이상의 우수한 내산성과 내담즙성을 확인하였다. 항산화 활성에서는 V4, V7이 상용균주인 L. paracasei BGP2와 비교하였을 때, 높은 항산화 활성을 보여 최종 2종을 한국전통식품으로부터 분리한 L. paracasei DK121와의 혼합균주 가능성을 알아보았다. 열 안정성 실험에서 V4, V7, DK121을 5:4:1(w/v)로 혼합한 혼합균주는 $55^{\circ}C$에서 5분 98.6%, 15분 76.4%, $65^{\circ}C$에서 5분 66%, 15분 63.8%로 단일균주보다는 낮은 생존율을 보였지만, 향후 적합한 혼합도간 연구를 통해 프로바이오틱 균주로서 충분한 가능성을 보여주었다. 장내 부착능에서는 선발균주 및 혼합균주 모두 상용균주와 비교했을 때 6.4 log CFU/g 이상으로 우수한 결합능을 보여 향후 내열성과 안정성을 갖는 우수한 균주라고 판단된다.

Comparative Genome Analysis and Evaluation of Probiotic Characteristics of Lactobacillus plantarum Strain JDFM LP11

  • Heo, Jaeyoung;Shin, Donghyun;Chang, Sung Yong;Bogere, Paul;Park, Mi Ri;Ryu, Sangdon;Lee, Woong Ji;Yun, Bohyun;Lee, Hak Kyo;Kim, Younghoon;Oh, Sangnam
    • 한국축산식품학회지
    • /
    • 제38권5호
    • /
    • pp.878-888
    • /
    • 2018
  • In the current study, the probiotic potential of approximately 250 strains of lactic acid bacteria (LAB) isolated from piglet fecal samples were investigated; among them Lactobacillus plantarum strain JDFM LP11, which possesses significant probiotic potential, with enhanced acid/bile tolerance, attachment to porcine intestinal epithelial cells (IPEC-J2), and antimicrobial activity. The genetic characteristics of strain JDFM LP11 were explored by performing whole genome sequencing (WGS) using a PacBio system. The circular draft genome have a total length of 3,206,883 bp and a total of 3,021 coding sequences were identified. Phylogenetically, three genes, possibly related to survival and metabolic activity in the porcine host, were identified. These genes encode p60, lichenan permease IIC component, and protein TsgA, which are a putative endopeptidase, a component of the phosphotransferase system (PTS), and a major facilitator in the gut environment, respectively. Our findings suggest that understanding the functional and genetic characteristics of L. plantarum strain JDFM LP11, with its candidate genes for gut health, could provide new opportunities and insights into applications in the animal food and feed additive industries.