• Title/Summary/Keyword: Probe 차량

Search Result 77, Processing Time 0.025 seconds

A study on the imputation solution for missing speed data on UTIS by using adaptive k-NN algorithm (적응형 k-NN 기법을 이용한 UTIS 속도정보 결측값 보정처리에 관한 연구)

  • Kim, Eun-Jeong;Bae, Gwang-Soo;Ahn, Gye-Hyeong;Ki, Yong-Kul;Ahn, Yong-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.66-77
    • /
    • 2014
  • UTIS(Urban Traffic Information System) directly collects link travel time in urban area by using probe vehicles. Therefore it can estimate more accurate link travel speed compared to other traffic detection systems. However, UTIS includes some missing data caused by the lack of probe vehicles and RSEs on road network, system failures, and other factors. In this study, we suggest a new model, based on k-NN algorithm, for imputing missing data to provide more accurate travel time information. New imputation model is an adaptive k-NN which can flexibly adjust the number of nearest neighbors(NN) depending on the distribution of candidate objects. The evaluation result indicates that the new model successfully imputed missing speed data and significantly reduced the imputation error as compared with other models(ARIMA and etc). We have a plan to use the new imputation model improving traffic information service by applying UTIS Central Traffic Information Center.

Exploring Smoothing Techniques for Reliable Travel-Time Information in Probe-Based Systems (프로브 기반 교통정보 신뢰성 향상을 위한 평활화 기법 탐색)

  • Jang, Jinhwan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.79-88
    • /
    • 2018
  • With the increasing popularity of electronic toll collection system using 5.8 GHz dedicated short-range communications (DSRC) technology, DSRC-based travel-time collection systems have been deployed on major urban and rural arterial routes in Korea. However, since probe sample sizes are frequently insufficient in probe-based systems, the gathered travel times from probe vehicles fluctuate significantly compared to those of the population; as a result, the accuracy of the collected travel times could decrease. To mitigate the fluctuations (also known as biases), smoothing techniques need to be applied. In this study, some smoothing techniques-moving average, the Loess, and Savitzky-Golay filtering-were applied to probe travel times. Resultantly, the error in the smoothed travel times at the lowest sampling plan (5%) decreased as much as 45% compared to those in non-smoothed travel times. The results of this study can be practically applied to probe-based travel-time estimation systems for providing reliable travel times along the travel corridor.

Probe Vehicle Data Collecting Intervals for Completeness of Link-based Space Mean Speed Estimation (링크 공간평균속도 신뢰성 확보를 위한 프로브 차량 데이터 적정 수집주기 산정 연구)

  • Oh, Chang-hwan;Won, Minsu;Song, Tai-jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.70-81
    • /
    • 2020
  • Point-by-point data, which is abundantly collected by vehicles with embedded GPS (Global Positioning System), generate useful information. These data facilitate decisions by transportation jurisdictions, and private vendors can monitor and investigate micro-scale driver behavior, traffic flow, and roadway movements. The information is applied to develop app-based route guidance and business models. Of these, speed data play a vital role in developing key parameters and applying agent-based information and services. Nevertheless, link speed values require different levels of physical storage and fidelity, depending on both collecting and reporting intervals. Given these circumstances, this study aimed to establish an appropriate collection interval to efficiently utilize Space Mean Speed information by vehicles with embedded GPS. We conducted a comparison of Probe-vehicle data and Image-based vehicle data to understand PE(Percentage Error). According to the study results, the PE of the Probe-vehicle data showed a 95% confidence level within an 8-second interval, which was chosen as the appropriate collection interval for Probe-vehicle data. It is our hope that the developed guidelines facilitate C-ITS, and autonomous driving service providers will use more reliable Space Mean Speed data to develop better related C-ITS and autonomous driving services.

A Design of Vehicle for Mobile 3D Printer (이동형 3D 프린터를 위한 차량 설계)

  • Jun-Young Park;Ha-Yeon Kim;Seung-Hoon Baek;Min-Seok Kim;Seung-Dae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.177-184
    • /
    • 2023
  • In this paper, based on Arduino, a vehicle is installed at the bottom of the 3D printer so that Arduino controls the vehicle that can expand the moving space. A stepping motor was mounted on the front wheel of the vehicle and precisely controlled using a motor driver. As a result, when moving 5cm, 25cm, and 50cm, the mean value of error rate was 0.6%, 0.04%, and 0.02%, respectively, to enable accurate distance control.

Study on Incident Detection Algorithm using Neuro-Fuzzy Inference System (Neuro-Fuzzy 추론 시스템을 이용한 유고검지 알고리즘 연구)

  • Hong, Nam-Kwan;Choi, Jin-Woo;Lee, Seung-Heon;Yang, Young-Kyu
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1234-1239
    • /
    • 2006
  • 신속하고 정확한 교통정보 서비스의 제공은 원활한 교통소통을 위하여 필수적인 요소이다. 특히, 교통사고, 도로보수 그리고 자연재해와 같은 유고가 발생할 경우, 운전자에게 즉시 통보해주어 우회할 수 있도록 조치하는 것이 필요하다. 이를 위하여 다양한 교통정보 수집기에서 수집된 교통정보를 바탕으로 실시간으로 유고상황을 판별하는 연구가 많이 진행되고 있다. 유고상황 분석은 다양한 환경요인으로 인해 판별이 어렵고, 최근에 활용되고 있는 인공지능 기법은 검지에 드는 시간 비용이 많다는 문제를 가지고 있다. 본 연구에서는 과거에 발생한 각종 돌발 상황을 분석하여 실시간으로 유고상황을 검지하는 것이 목적이다. 유고검지를 위해 GPS를 탑재한 probe car에서 수집된 차량속도와 온라인으로 제보된 유고정보를 ANFIS를 이용하여 분석 후 유고상태를 판별한다. 본 연구를 통해 실시간 도로 이용자들이 유고 발생 지역의 정보를 제공받고 그 상황에 신속하게 대처하게 함으로써 교통 혼잡 완화에 기여할 것으로 기대한다.

  • PDF

A Study on Algorithm for Travel Time Estimation using Restricted GPS Data (제한된 GPS정보를 활용한 통행 시간 추정 알고리즘에 관한 연구)

  • Yoo, Nam-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.12
    • /
    • pp.1373-1380
    • /
    • 2014
  • In order to calculate accurate traffic and traffic speed, qualified and sufficient GPS data should be provided. However, it is difficult to provide accurate traffic information using restricted GPS data from probe vehicles because of communication costs. This paper developed a algorithm that recovers links omitted by restricted GPS data with topology information, and calculate traffic speed with original links and recovered links. T traffic information service of city with a new algorithm can provide more accurate traffic and traffic speed than the original system.

Single particle characterization of atmospheric aerosol particles collected in Seoul, using low-Z electron probe X-ray microanalysis (Low-Z Electron Probe X-ray Microanalysis를 이용한 서울시 대기 중 입자상 물질 분석)

  • 구희준;노철언;김혜경
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.352-353
    • /
    • 2002
  • 최근 산업이 발달함에 따라 수도권을 비롯한 도시에서의 인구집중과 증가로 인한 운행 차량 수의 증가, 산업규모의 확대 둥으로 인해 대기분진 중 호흡성 또는 미세분진 농도의 증가가 관찰되고 있으며 이로 인한 주민건강 위해의 가능성이 제기되고 있다. 2.5$\mu\textrm{m}$ 이하의 미세 입자는 폐포내 침착율이 높으며, 유해성 가스 및 중금속을 쉽게 흡착하여 인체에 전달하는 매체가 되기도 하고, 빛을 흡수, 산란시키기 때문에 시정을 악화.시킨다. 따라서 도시대기의 입자상 물질의 물리적, 화학적 특성에 대해서 많은 연구가 진행되어 왔다. (중략)

  • PDF

ADPSS Channel Interpolation and Prediction Scheme in V2I Communication System (V2I 통신 시스템에서 ADPSS 채널 보간과 예측 기법)

  • Chu, Myeonghun;Moon, Sangmi;Kwon, Soonho;Lee, Jihye;Bae, Sara;Kim, Hanjong;Kim, Cheolsung;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.34-41
    • /
    • 2017
  • Vehicle to Infrastructure(V2I) communication means the technology between the vehicle and the roadside unit to provide the Intelligent Transportation Systems(ITS) and Telematic services. The vehicle collects information about the probe data through the evolved Node B(eNodeB) and after that eNodeB provides road conditions or traffic information to the vehicle. To provide these V2I communication services, we need a link adaptation technology that enables reliable and higher transmission rate. The receiver transmits the estimated Channel State Information(CSI) to transmitter, which uses this information to enable the link adaptation. However, due to the rapid channel variation caused by vehicle speed and the processing delay between the layers, the estimated CSI quickly becomes outdated. For this reason, channel interpolation and prediction scheme are needed to achieve link adaptation in V2I communication system. We propose the Advanced Discrete Prolate Spheroidal Sequence(ADPSS) channel interpolation and prediction scheme. The proposed scheme creates an orthonomal basis, and uses a correlation matrix to interpolate and predict channel. Also, smoothing is applied to frequency domain for noise removal. Simulation results show that the proposed scheme outperforms conventional schemes with the high speed and low speed vehicle in the freeway and urban environment.

The Consideration on Calculation of Optimal Travel Speeds based on Analysis of AVI Data (AVI 수집 자료 분석에 근거한 최적 통행속도 산출에 관한 고찰)

  • Jeong, Yeon Tak;Jung, Hun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.625-637
    • /
    • 2015
  • This study aims to calculate optimal travel speeds based on analysis of the AVI data collected in the uninterrupted traffic flow, and the results are as follows. Firstly, we looked into the distribution of the sectional travel times of each probe vehicle and compared the difference in the sectional travel speeds of each probe vehicle. As a result, it is shown that outliers should be removed for the distribution of the sectional travel times. Secondly, there were differences among type 1(passenger automobiles) & type 2(automobiles for passengers and freight) and type 4(special automobiles) in the non-congestion section. thus it was revealed that there is a necessity to remove type 4(special automobiles) when calculating the sectional travel speeds. Thirdly, Based on the results of these, the optimal outlier removal procedures were applied to this study. As a result, it showed that the MAPE was between 0.3% and 2.0% and RMSE was between 0.3 and 2.3 which are very similar figures to the actual average traffic speed. Also, the minimum sample size was satisfied at the confidence level of 95%. The result of study is expected to serve as a useful basis for the local government to build the AVI. In the future, it will be necessary to study to integrate AVI data and other data for more accurate traffic information.

Measurement of Travel Time Using Sequence Pattern of Vehicles (차종 시퀀스 패턴을 이용한 구간통행시간 계측)

  • Lim, Joong-Seon;Choi, Gyung-Hyun;Oh, Kyu-Sam;Park, Jong-Hun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.5
    • /
    • pp.53-63
    • /
    • 2008
  • In this paper, we propose the regional travel time measurement algorithm using the sequence pattern matching to the type of vehicles between the origin of the region and the end of the region, that could be able to overcome the limit of conventional method such as Probe Car Method or AVI Method by License Plate Recognition. This algorithm recognizes the vehicles as a sequence group with a definite length, and measures the regional travel time by searching the sequence of the origin which is the most highly similar to the sequence of the end. According to the assumption of similarity cost function, there are proposed three types of algorithm, and it will be able to estimate the average travel time that is the most adequate to the information providing period by eliminating the abnormal value caused by inflow and outflow of vehicles. In the result of computer simulation by the length of region, the number of passing cars, the length of sequence, and the average maximum error rate are measured within 3.46%, which means that this algorithm is verified for its superior performance.

  • PDF