• Title/Summary/Keyword: Probability of damages

Search Result 109, Processing Time 0.024 seconds

Development of Multi-hazard Fragility Surface for Liquefaction of Levee Considering Earthquake Magnitude and Water Level (수위와 지진을 고려한 제방의 액상화에 대한 복합재해 취약도 곡면 작성)

  • Hwang, Ji-Min;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.25-36
    • /
    • 2018
  • Soil liquefaction is one of the types of major seismic damage. Soil liquefaction is a phenomenon that can cause enormous human and economic damages, and it must be examined before designing geotechnical structures. In this study, we proposed a practical method of developing a multi-hazard fragility surface for liquefaction of levee considering earthquake magnitude and water level. Limit state for liquefaction of levee was defined by liquefaction potential index (LPI), which is frequently used to assess the liquefaction susceptibility of soils. In order to consider the uncertainty of soil properties, Monte Carlo Simulation based probabilistic analysis was performed. Based on the analysis results, a 3D fragility surface representing the probability of failure by soil liquefaction as a function of the ground motion and water level has been established. The prepared multi-hazard fragility surface can be used to evaluate the safety of levees against liquefaction and to assess the risk in earthquake and flood prone areas.

Appropriateness analysis of design rainfall factors using the rainfall data of an inundated flood events (침수 홍수사상의 강우자료를 활용한 설계강우 요소의 적정성 분석)

  • Yu, Byeong-Wook;Kim, Seon-Ho;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.237-247
    • /
    • 2020
  • The purpose of this study is to analyze whether design rainfall and hyetograph, which are the main elements of design rainfall, can properly reflect the those of observed rainfalls through inundated rainfall events. The target areas were selected at seven large cities with high damages regarding to the flooding. Comparative analysis between probability and observed rainfall shows that 57% of the cases, in which rainfall amount through the IDF curve is estimated lower than the observed rainfall, do not properly reflect the observed rainfalls. In particular, this trend is exacerbated by the cases in low return period and the rain type of typhoon or frontal rain. The comparative results of rainfall intensity formula showed that the Talbot and Japanese formula were stable in the short- and long-term return periods, respectively. The comparison of hyetograph results also showed that the Mononobe method properly reflects the maximum rainfall intensity and the Huff method properly reflects the shape of rainfall pattern.

A Study on the Prediction of Fire Load in case of a Train Fire (철도 차량 화재시 화재강도 예측을 위한 연구)

  • Yang, Sung-Jin;Chang, Jung-Hoon;Gang, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2101-2108
    • /
    • 2008
  • Most of train fires which occur in usual cases do not grow up significantly on a large scale enough to bring about casualties and harmful damages. However, the consequence of some train fire accidents can be devastating disaster so that it would be even recorded in history in unusual cases. Accordingly, such a probability of fire disaster cannot be ignored in aspect of the railway safety assesment. A scale of injury and damage is very difficult to predict and analyze. Because it is depend on various factors, i.e. fire load, burning period, facilities, environment condition, and so on. Thus, a prediction of fire load could be understood as a one methodology to estimate railway safety assesment. The summation method which is one of them is used to evaluate the overall fire load by assuming that sum of heat release rate per unit area or mass of each composite material equals the total. However, since the train fire is classified into a compartment fire in under-ventilation condition. The summation method do not estimate a fire load completely. In this journal, Various methods to predict fire load are introduced and evaluated. Especially the fire simulation tool FDS(Fire Dynamics Simulator)which is based on the CFD(Computational Fluid Dynamics) is introduced, too. Through the FDS simulation, numerical analyses for the fire load and flame spread are performed. Then, these results of the simulation are validated through the comparison study with the experimental data. Then, limitations and approximations including in simulation process are discussed. The future direction of research is proposed.

  • PDF

Probabilistic prediction of reservoir storage considering the uncertainty of dam inflow (댐 유입량의 불확실성을 고려한 저수량의 확률론적 예측)

  • Kwon, Minsung;Park, Dong-Hyeok;Jun, Kyung Soo;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.607-614
    • /
    • 2016
  • The well-timed water management is required to reduce drought damages. It is also necessary to induce residents in drought-affected areas to save water. Information on future storage is important in managing water resources based on the current and future states of drought. This study employed a kernel function to develop a probabilistic model for predicting dam storage considering inflow uncertainty. This study also investigated the application of the proposed probabilistic model during the extreme drought. This model can predict a probability of temporal variation of storage. Moreover, the model can be used to make a long-term plan since it can identify a temporal change of storage and estimate a required reserving volume of water to achieve the target storage.

Short-term fatigue analysis for tower base of a spar-type wind turbine under stochastic wind-wave loads

  • Li, Haoran;Hu, Zhiqiang;Wang, Jin;Meng, Xiangyin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.9-20
    • /
    • 2018
  • Due to integrated stochastic wind and wave loads, the supporting platform of a Floating Offshore Wind Turbine (FOWT) has to bear six Degrees of Freedom (DOF) motion, which makes the random cyclic loads acting on the structural components, for instance the tower base, more complicated than those on bottom-fixed or land-based wind turbines. These cyclic loads may cause unexpected fatigue damages on a FOWT. This paper presents a study on short-term fatigue damage at the tower base of a 5 MW FOWT with a spar-type platform. Fully coupled time-domain simulations code FAST is used and realistic environment conditions are considered to obtain the loads and structural stresses at the tower base. Then the cumulative fatigue damage is calculated based on rainflow counting method and Miner's rule. Moreover, the effects of the simulation length, the wind-wave misalignment, the wind-only condition and the wave-only condition on the fatigue damage are investigated. It is found that the wind and wave induced loads affect the tower base's axial stress separately and in a decoupled way, and the wave-induced fatigue damage is greater than that induced by the wind loads. Under the environment conditions with rated wind speed, the tower base experiences the highest fatigue damage when the joint probability of the wind and wave is included in the calculation. Moreover, it is also found that 1 h simulation length is sufficient to give an appropriate fatigue damage estimated life for FOWT.

Design and Data Analysis of Signal Measurement System for In-Building Propagation Characteristics based on Variable Short Signature Sequences (가변의 짧은 시그니처 시퀀스 기반 건물 내 메시지 전달특성 측정시스템 설계)

  • Kim, Jeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.10-14
    • /
    • 2015
  • Recently, the collection of the sensor data and its analysis become important as the smart buildings equipped with the various sensors appear as a usual scene. The interconnection through the wire cable among the sensors is indispensible because of the information collections such as the temperature, the humidity, and the luminance in the rooms and the hallways for the effective management of the in-building energies. However, these interconnections through the cabling will be very costly, time-consuming, and a difficult task since they will cause some damages to the buildings. Therefore, the interconnections through the unwired connections are required in terms of the deployment effectiveness such as time and cost In this paper, the design and the short sequence operation appropriateness are confirmed through the simulation of the signal measurement system for in-building propagation characteristics based on short signature sequence and the analysis of the system characteristics based on the false alarm probability is performed thereafter.

AWGN Removal using Laplace Distribution and Weighted Mask (라플라스 분포와 가중치 마스크를 이용한 AWGN 제거)

  • Park, Hwa-Jung;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1846-1852
    • /
    • 2021
  • In modern society, various digital devices are being distributed in a wide range of fields due to the fourth industrial revolution and the development of IoT technology. However, noise is generated in the process of acquiring or transmitting an image, and not only damages the information, but also affects the system, causing errors and incorrect operation. AWGN is a representative noise among image noise. As a method for removing noise, prior research has been conducted, and among them, AF, A-TMF, and MF are the representative methods. Existing filters have a disadvantage that smoothing occurs in areas with high frequency components because it is difficult to consider the characteristics of images. Therefore, the proposed algorithm calculates the standard deviation distribution to effectively eliminate noise even in the high frequency domain, and then calculates the final output by applying the probability density function weight of the Laplace distribution using the curve fitting method.

Probabilistic Safety Assessment of Offsite Power System Under Typhoon-induced High Wind (소외전력망의 태풍 동반 강풍 확률론적 안전성 평가)

  • Kim, Gungyu;Kwag, Shinyoung;Eem, Seunghyun;Jin, Seung-Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.277-282
    • /
    • 2024
  • Recently, the intensity and frequency of typhoons have been increasing due to climate change, and typhoons can cause a loss of offsite power (LOOP) at nuclear power plants (NPPs). Therefore, it is necessary to prepare for typhoon-induced high winds through the probabilistic safety assessment (PSA) of offsite power systems. However, research on PSA for offsite power system in NPPs under typhoon-induced high winds is still lacking. In this study, PSA was performed for offsite power systems subjected to typhoon-induced high winds at the Kori NPP site, which has experienced frequent damages to its offsite power system among NPP sites in Korea. In order to perform PSA for typhoon-induced high winds in offsite power systems, the typhoon hazard at Kori NPP site was derived using logic tree and Monte Carlo simulation. Utilizing the fragility of components constituting the power system, performed a fragility analysis of the power system. Lastly, the probability that offsite power system will not be able to supply power to the NPP was derived.

Reliability-Based Managing Criteria for Cable Tension Force in Cable-stayed Bridges (신뢰성에 기초한 사장교 케이블 장력 관리기준치 설정)

  • Cho, Hyo-Nam;Kang, Kyung-Koo;Cha, Cheol-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.129-138
    • /
    • 2005
  • This paper presents a methodology for the determination of optimal managing criteria for cable tension force in cable-stayed bridges using acceleration data acquired by monitoring system. There are many long span bridges installed with monitoring system in Korea. The monitoring systems are installed to diagnose abnormal behavior or damages in bridges and to warn these to bridge management agency. In cable-stayed bridges, the cable tension force could be an important indicator of abnormal behavior because of the geometric configuration of the cable-stayed bridge. If the management value of cable tension force is set too high or too low, then the monitoring system could not warn properly for the abnormal behavior of a bridge. Generally, the management value is set by empirical or engineering judgment, but in this paper, a new methodology for the determination of managing criteria for cable tension force is proposed based on the probability distribution model for tension force and reliability analysis. The proposed methodology is applied to a real concrete cable-stayed bridge in order to investigate its applicability.

Assessment of Drought Risk in Korea: Focused on Data-based Drought Risk Map (우리나라 가뭄 위험도 평가: 자료기반 가뭄 위험도 지도 작성을 중심으로)

  • Park, Jong Yong;Yoo, Ji Young;Lee, Minwoo;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4B
    • /
    • pp.203-211
    • /
    • 2012
  • Once drought occurs, it results in the extensive affected area and considerable socio-economic damages. Thus, it is necessary to assess drought risk and to prepare its counterplans. In this study, using various observation data on meteorological and socio-economical factors, drought risk was evaluated in South Korea. To quantify drought risk, Drought Hazard Index (DHI) was calculated based on the occurrence probability of drought, and Drought Vulnerability Index (DVI) was computed to reflect socio-economic consequences of drought. Drought Risk Index (DRI) was finally suggested by combining DHI and DVI. These indices were used to assess drought risk for different administrative districts of South Korea. The overall results show that the highest drought risk area was Jeolla Province where agricultural practice is concentrated. The drought risk map proposed in this study reflects regional characteristics, thus it could be utilized as a basic data for the establishment of drought preventive measures.