• Title/Summary/Keyword: Probability of Failure

Search Result 1,272, Processing Time 0.028 seconds

Prediction of Durability for RC Columns with Crack and Joint under Carbonation Based on Probabilistic Approach

  • Kwon, Seung-Jun;Na, Ung-Jin
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • Carbonation in RC (reinforced concrete) structure is considered as one of the most critical deteriorations in urban cities. Although RC column has one mix condition, carbonation depth is measured spatially differently due to its various environmental and internal conditions such as sound, cracked, and joint concrete. In this paper, field investigation was performed for 27 RC columns subjected to carbonation for eighteen years. Through this investigation, carbonation distribution in sound, cracked, and joint concrete were derived with crack mappings. Considering each related area and calculated PDF (probability of durability failure) of sound, cracked, and joint concrete through Monte Carlo Simulation (MCS), repairing timings for RC columns are derived based on several IPDF (intended probability of durability failure) of 1, 3, and 5%. The technique of equivalent probability including carbonation behaviors which are obtained from different conditions can provide the reasonable repairing strategy and the priority order for repairing in a given traffic service area.

Failure Probability Assessment of Natural Gas Pipeline under Combined Stresses (복합하중에 의한 천연가스 배관의 파손확률 평가)

  • Baek, Jong-Hyun;Chang, Yun-Chan;Kim, Ik-Jung;Kim, Cheol-Man;Kim, Young-Pyo
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.10-17
    • /
    • 2020
  • The structural reliability assessment can be used to improve the reliability in the asset integrity management of the pipeline by using a geometric variation, mechanical characteristics, load change and operating condition as evaluation factors. When evaluating structural reliability, the failure probability of the natural gas pipe is evaluated by the relationship of the resistance of the pipe material to external loads. The failure probability of the natural gas pipe due to the combined stresses such as the internal pressure, thermal stress and bending stress was evaluated by using COMREL program. When evaluating the failure probability of the natural gas pipe, a buried depth of 1.5 to 30 m, a wheel load of 2.5 to 20 ton, a temperature difference of 45℃, an operating pressure of 6.86MPa, and a soil density of 1.8 kN/㎥ were used. The failure probabilities of the natural gas pipe were evaluated by the Von-Mises stress criterion as the maximum allowable stress criterion under the combined stresses.

A Study on the Risk Evaluation using Acoustic Emission in Rock Slope (암반 비탈면에서 AE 기법을 이용한 위험도 평가 연구)

  • Byun, Yoseph;Kim, Sukchun;Seong, Joohyun;Chun, Byungsik;Jung, Hyuksang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.5-12
    • /
    • 2014
  • A slope may fail after construction owing to external factors such as localized rainfall, earthquake, and weathering. Therefore, the grasp of failure probability for slope failures is necessary to maintain their stability. In particular, it is very difficult to detect the symptoms of rock slope failure in advance by using traditional methods, such as displacement due to the brittleness of rocks. However, Acoustic Emission (AE) techniques can predict slope failures earlier than the traditional methods. This study grasped failure probability of slope by applying AE techniques to a rock slope with a history of collapse. When applying AE techniques to a slope that has a high probability of failure, the grasp of failure probability of the specific location became possible.

Consumer Misperceptions, Product Liability Law and Product Safety

  • Lee Jong-In
    • International Journal of Human Ecology
    • /
    • v.6 no.2
    • /
    • pp.63-72
    • /
    • 2005
  • This paper considered the impact of changing the product liability rule from consumer to producer liability on product safety under asymmetric information. In particular, it has been attempted to remove several constraints on antecedent studies. The main results of the study are as follows: under the misperception of the risk on a product, consumers may underestimate the probability of product failure. In this case, the accident rate can be lowered under the producer's liability rule. However, even under the asymmetric information, a consumer's estimation on the probability may be converged with the expected risk level, which could be called the 'rational expectation.' In this situation the probability of product failure can be lowered under the strict liability with contributory negligence. Additionally, it is possible to reduce the probability of product failure when a legal rule that imposes liability on cheapest cost avoider is admitted.

Reliability Analysis for Composite Laminated Plate Using Hybrid Response Surface Method (복합 반응면 기법을 이용한 복합재 적층판의 신뢰성해석)

  • Lee, Seok-Je;Kim, In-Gul
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.40-47
    • /
    • 2010
  • In this paper, the hybrid response surface method(HRSM) is proposed and examined. Hybrid response surface method calculate a approximate model repeatedly based on MPP coordinates. To verify the performance, probability of failure, MPP(Most Probable failure Point) and reliability index are calculated for nonlinear function and composite laminated plate by using reliability analysis method and compared with results by using typical response surface method(RSM). Probability of failure is calculated under the assumption of the nonlinear limit state equation and given failure criterion. The results of proposed method shows performance improvement in estimating the probability of failure.

A Service Life Prediction for Joint and Cracked Concrete Exposed to Carbonation Based on Stochastic Approach (신뢰성 해석을 통한 탄산화에 노출된 타설이음부 및 균열부 콘크리트의 내구수명 평가)

  • Kwon, Seung-Jun;Park, Sang-Sun;Lee, Sang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.597-600
    • /
    • 2006
  • In this study, field survey of carbonation for RC column in city is carried out and carbonation behavior in sound, joint, and cracked concrete is also analyzed. Futhermore, probability of durability failure with time is calculated through considering probability variables such as concrete cover depth and carbonation depth which are obtained from field survey. The probability of durability failure in cracked concrete with considering crack width and time is also calculated and service life is predicted based on intended failure probability in domestic specification. Through this study, it is known that service life in a RC column is evaluated differently for local conditions and each service life is rapidly decreased with decrease in cover depth and increase in crack width.

  • PDF

Dynamic Response based Reliability Analysis of Structure with Passive Damper - Part 1: Assessment of Member Failure Probability (수동형 댐퍼를 장착한 구조물의 동적응답기반 신뢰성 해석 - 제1편: 부재별 파괴확률 산정)

  • Kim, Seung-Min;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.90-96
    • /
    • 2016
  • This study proposes a dynamic reliability analysis of control system as a method of quantitative evaluation of its performance in probabilistic terms. In this dynamic reliability analysis, the failure event is defined as an event that the dynamic response of the structural system exceeds a displacement limit, whereas the conventional reliability analysis method has limitations that do not properly assess the actual time history response of the structure subjected to dynamic loads, such as earthquakes and high winds, by taking the static response into account in the failure event. In this first paper, we discuss the control effect of the viscous damper on the seismic performance of the member-level failure where the failure event of the structural member consists of the union set of time-sequential member failures during the earthquake excitations and the failure probability of the earthquake-excited structural member is computed using system reliability approach to consider the statistical dependence of member failures between the subsequent time points. Numerical results demonstrate that the proposed approach can present a reliable assessment of the control performance of the viscous damper system in comparison with MCS method. The most important advantage of the proposed approach can provide us more accurate estimate of failure probability of the structural control system by using the actual time-history responses obtained by dynamic response analysis.

Evaluation of Failure Probability for Planar Failure Using Point Estimate Method (점추정법을 이용한 평면파괴의 파괴확률 신정)

  • Park, Hyuck-Jin
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.189-197
    • /
    • 2002
  • In recent years, the probabilistic analysis has been used in rock slope engineering. This is because uncertainty is pervasive in rock slope engineering and most geometric and geotechnical parameters of discontinuity and rock masses are involved with uncertainty. Whilst the traditional deterministic analysis method fails to properly deal with uncertainty, the probabilistic analysis has advantages quantifying the uncertainty in parameters. As a probabilistic analysis method, the Monte Carlo simulation has been used commonly. However, the Monte Carlo simulation requires many repeated calculations and therefore, needs much effort and time to calculate the probability of failure. In contrast, the point estimate method involves a simple calculation with moments for random variables. In this study the probability of failure in rock slope is evaluated by the point estimate method and the results are compared to the probability of failure obtained by Monte Carlo simulation method.

Exact Decoding Probability of Random Linear Network Coding for Tree Networks

  • Li, Fang;Xie, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.714-727
    • /
    • 2015
  • The hierarchical structure in networks is widely applied in many practical scenarios especially in some emergency cases. In this paper, we focus on a tree network with and without packet loss where one source sends data to n destinations, through m relay nodes employing random linear network coding (RLNC) over a Galois field in parallel transmission systems. We derive closed-form probability expressions of successful decoding at a destination node and at all destination nodes in this multicast scenario. For the convenience of computing, we also propose an upper bound for the failure probability. We then investigate the impact of the major parameters, i.e., the size of finite fields, the number of internal nodes, the number of sink nodes and the channel failure probability, on the decoding performance with simulation results. In addition, numerical results show that, under a fixed exact decoding probability, the required field size can be minimized. When failure decoding probabilities are given, the operation is simple and its complexity is low in a small finite field.

Structural reliability estimation based on quasi ideal importance sampling simulation

  • Yonezawa, Masaaki;Okuda, Shoya;Kobayashi, Hiroaki
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.55-69
    • /
    • 2009
  • A quasi ideal importance sampling simulation method combined in the conditional expectation is proposed for the structural reliability estimation. The quasi ideal importance sampling joint probability density function (p.d.f.) is so composed on the basis of the ideal importance sampling concept as to be proportional to the conditional failure probability multiplied by the p.d.f. of the sampling variables. The respective marginal p.d.f.s of the ideal importance sampling joint p.d.f. are determined numerically by the simulations and partly by the piecewise integrations. The quasi ideal importance sampling simulations combined in the conditional expectation are executed to estimate the failure probabilities of structures with multiple failure surfaces and it is shown that the proposed method gives accurate estimations efficiently.