• Title/Summary/Keyword: Probability chart

Search Result 62, Processing Time 0.021 seconds

EWM-MR chart for individual measurements in start-up process (초기공정에서 개별관측치를 이용한 EWM-MR 관리도)

  • 지선수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.47
    • /
    • pp.211-218
    • /
    • 1998
  • In start-up process control applications it may be necessary to limit the sample size to one measurement. A control chart for individual measurements is used whenever it is desirable to examine each individual value from the process immediately. A possible option would be to use an exponential weighted moving(EWM), using modifying statistics with individual measurement, chart for monitoring the process center, and using a moving range (MR) chart for monitoring process variability. In this paper it is shown that there is scheme in using the EWM procedure based on average run length. An expression for the ARL is given in terms of an integral equation, approximated using numerical quadrature. In this case, where it is reasonable to assume normality and negligible autocorrelation in the observations, provide graphs that simplify the design of EWM-MR chart and taking method of exponential smoothing constant(λ) and constant(K) are suggested. The charts suggested above evaluate using the conditional probability.

  • PDF

Design of the Robust CV Control Chart using Location Parameter (위치모수를 이용한 로버스트 CV 관리도의 설계)

  • Chun, Dong-Jin;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.116-122
    • /
    • 2016
  • Recently, the production cycle in manufacturing process has been getting shorter and different types of product have been produced in the same process line. In this case, the control chart using coefficient of variation would be applicable to the process. The theory that random variables are located in the three times distance of the deviation from mean value is applicable to the control chart that monitor the process in the manufacturing line, when the data of process are changed by the type of normal distribution. It is possible to apply to the control chart of coefficient of variation too. ${\bar{x}}$, s estimates that taken in the coefficient of variation have just used all of the data, but the upper control limit, center line and lower control limit have been settled by the effect of abnormal values, so this control chart could be in trouble of detection ability of the assignable value. The purpose of this study was to present the robust control chart than coefficient of variation control chart in the normal process. To perform this research, the location parameter, ${\bar{x_{\alpha}}}$, $s_{\alpha}$ were used. The robust control chart was named Tim-CV control chart. The result of simulation were summarized as follows; First, P values, the probability to get away from control limit, in Trim-CV control chart were larger than CV control chart in the normal process. Second, ARL values, average run length, in Trim-CV control chart were smaller than CV control chart in the normal process. Particularly, the difference of performance of two control charts was so sure when the change of the process was getting to bigger. Therefore, the Trim-CV control chart proposed in this paper would be more efficient tool than CV control chart in small quantity batch production.

A Generalized MLE of the Process Change Point

  • Lee Jaeheon;Park Changsoon
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.436-441
    • /
    • 2004
  • Knowing the time of the process change could lead to quicker identification of the responsible special cause and less process down time, and it could help to reduce the probability of incorrectly identifying the special cause. In this paper, we propose a generalized maximum likelihood estimate. (MLE) of the process change point when a control chart with variable sample size (VSS) scheme signals a change in the process mean, and evaluate the performance of this estimator when it mi used with a VSS EWMA chart.

  • PDF

Selection of the economically optimal parameters in the EWMA control chart (지수가중이동평균관리도의 경제적 최적모수의 선정)

  • 박창순;원태연
    • The Korean Journal of Applied Statistics
    • /
    • v.9 no.1
    • /
    • pp.91-109
    • /
    • 1996
  • Exponentially weighted moving averae(EWMA) control chart has been used widely for process monitoring and process adjustment recently, but there has not been many studies about the selection of the parameters. Design of the control chart can be classified into the statistical design and the economic design. The purpose of the economic design is to minimize the cost function in which all the possible costs occurring during the process are probability given the Type I error probability. In this paper the optimal parameters of the EWMA chart are selected for the economic design as well as for the statistical design. The optimal parameters for the economic design show significantly different from those of the statistical design, and especially the weight is always larger than that used in the statistical design. In the economic design, we divide the model into the single assignable cause model and the multiple assignable causes model caacording to number of which is used as the average context of the multiple assignable causes, it shows that the selection of the parameters may be misleading when the multiple assignable causes exist in practice.

  • PDF

An Economic Design of the EWMA Control Charts with Variable Sampling Interval (VSI EWIMA 관리도의 경제적 설계)

  • 송서일;정혜진
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.4
    • /
    • pp.1-14
    • /
    • 2002
  • Traditional SPC techniques are looking out variation of process by fixed sampling interval and fixed sample size about every hour, the process of in-control or out-of-control couldn't be detected actually when the sample points are plotted near control limits, and it takes no notice of expense concerned with such sample points. In this paper, to overcome that, consider VSI(variable sampling interval) EWMA control charts which VSI method is applied. The VSI control charts use a short sampling internal if previous sample points are plotted near control limits, then the process has high probability of out-of-control. But it uses a long sampling interval if they are plotted near centerline of the control chart, since process has high possibility of in-control. And then a comparison and analysis between FSI(fixed sampling interval) and VSI EWMA in the statistical aspect and economic aspect is studied. Finally, we show that VSI EWMA control chart is more efficient than FSI EWMA control chart in the both aspects.

Numerical Switching Performances of Cumulative Sum Chart for Dispersion Matrix

  • Chang, Duk-Joon
    • Journal of Integrative Natural Science
    • /
    • v.12 no.3
    • /
    • pp.78-84
    • /
    • 2019
  • In many cases, the quality of a product is determined by several correlated quality variables. Control charts have been used for a long time widely to control the production process and to quickly detect the assignable causes that may produce any deterioration in the quality of a product. Numerical switching performances of multivariate cumulative sum control chart for simultaneous monitoring all components in the dispersion matrix ${\Sigma}$ under multivariate normal process $N_p({\underline{\mu}},{\Sigma})$ are considered. Numerical performances were evaluated for various shifts of the values of variances and/or correlation coefficients in ${\Sigma}$. Our computational results show that if one wants to quick detect the small shifts in a process, CUSUM control chart with small reference value k is more efficient than large k in terms of average run length (ARL), average time to signal (ATS), average number of switches (ANSW).

A Study on the Alternative ARL Using Generalized Geometric Distribution (일반화 기하분포를 이용한 ARL의 수정에 관한 연구)

  • 문명상
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.4
    • /
    • pp.143-152
    • /
    • 1999
  • In Shewhart control chart, the average run length(ARL) is calculated using the mean of a conventional geometric distribution(CGD) assuming a sequence of identical and independent Bernoulli trials. In this, the success probability of CGB is the probability that any point exceeds the control limits. When the process is in-control state, there is no problem in the above assumption since the probability that any point exceeds the control limits does not change if the in-control state continues. However, if the out-of-control state begins and continues during the process, the probability of exceeding the control limits may take two forms. First, once the out-of-control state begins with exceeding probability p, it continues with the same exceeding probability p. Second, after the out-of-control state begins, the exceeding probabilities may very according to some pattern. In the first case, ARL is the mean of CGD with success probability p as usual. But in the second case, the assumption of a sequence of identical and independent Bernoulli trials is invalid and we can not use the mean of CGD as ARL. This paper concentrate on that point. By adopting one generalized binomial distribution(GBD) model that allows correlated Bernoulli trials, generalized geometric distribution(GGD) is defined and its mean is derived to find an alternative ARL when the process is in out-of-control state and the exceeding probabilities take the second form mentioned in the above. Small-scale simulation is performed to show how an alternative ARL works.

  • PDF

A Study on Essential Concepts, Tools, Techniques and Methods of Stock Market Trading: A Guide to Traders and Investors (주식 거래의 필수 개념, 도구, 기법 및 방법에 관한 연구: 거래자와 투자자를 위한 안내서)

  • Sukhendu Mohan Patnaik;Debahuti Mishra
    • Advanced Industrial SCIence
    • /
    • v.2 no.1
    • /
    • pp.21-38
    • /
    • 2023
  • An attempt has been made in this article to discuss the fundamentals of technical analysis of the stock market. A retail investor or trader may not have the wherewithal to source that kind of information. Technical analysis requires a candlestick chart only. Most of the brokers in India provide charting solutions as well. Studying the price action of a security or commodity or Forex generally indicates a price pattern. Prices react at certain levels and widely known as support and resistance levels. Since whatever is happening with the price of the security is considered to be a part of a pattern or cycle which has already played out sometime in the past, these studies help a keen technical analyst to identify with certain probability, the future movement of the price. Study of the candlestick patterns, price action, volumes and indicators offer the opportunities to identify a high probability trade with probable target and a stop loss. A trader or investor can take high probability trade or position and control only her losses.

Evaluation of Performance on Attribute Control Chart using Variable Sampling Intervals (가변추출구간을 이용한 계수치 관리도의 수행도 평가)

  • Song Suh-Ill;Geun Lee-Bo
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.359-364
    • /
    • 2002
  • In case of pn control chart often used in mass production system of plant industry and so on, we could evaluate it's performance by the approximation to normal distribution. It has many differences according to sample sizes and defective fraction, and have disadvantage that needs much samples to use the normal distribution approximation. Existent control charts can not detect the cause of process something wrong because it is taking the sampling intervals of fixed length about all times from the process. Therefore, to overcome this shortcoming we use VSI(variable sampling intervals) techniques in this paper. This technique takes a long sampling interval to have the next sampling point if the sample point is in stable state, and if the sample point is near control lines, it takes short sampling interval because the probability to escape control limit is high. To analyze performance of pn control charts that have existent fixed sampling intervals(FSI) and that use VSI technique, we compare ATS of two charts, and analyze the performance of each control chart by the sample sizes, process fraction defective and control limits that Ryan and Schwertman had proposed.

  • PDF

Estimation of the Change Point in Monitoring the Mean of Autocorrelated Processes

  • Lee, Jae-Heon;Han, Jung-Hee;Jung, Sang-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.155-167
    • /
    • 2007
  • Knowing the time of the process change could lead to quicker identification of the responsible special cause and less process down time, and it could help to reduce the probability of incorrectly identifying the special cause. In this paper, we propose the maximum likelihood estimator (MLE) for the process change point when a control chart is used in monitoring the mean of a process in which the observations can be modeled as an AR(1) process plus an additional random error. The performance of the proposed MLE is compared to the performance of the built-in estimator when they are used in EWMA charts based on the residuals. The results show that the proposed MLE provides good performance in terms of both accuracy and precision of the estimator.