• Title/Summary/Keyword: Probability Factor

Search Result 1,015, Processing Time 0.024 seconds

Probabilistic analysis of gust factors and turbulence intensities of measured tropical cyclones

  • Tianyou Tao;Zao Jin;Hao Wang
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.309-323
    • /
    • 2024
  • The gust factor and turbulence intensity are two crucial parameters that characterize the properties of turbulence. In tropical cyclones (TCs), these parameters exhibit significant variability, yet there is a lack of established formulas to account for their probabilistic characteristics with consideration of their inherent connection. On this condition, a probabilistic analysis of gust factors and turbulence intensities of TCs is conducted based on fourteen sets of wind data collected at the Sutong Cable-stayed Bridge site. Initially, the turbulence intensities and gust factors of recorded data are computed, followed by an analysis of their probability densities across different ranges categorized by mean wind speed. The Gaussian, lognormal, and generalized extreme value (GEV) distributions are employed to fit the measured probability densities, with subsequent evaluation of their effectiveness. The Gumbel distribution, which is a specific instance of the GEV distribution, has been identified as an optimal choice for probabilistic characterizations of turbulence intensity and gust factor in TCs. The corresponding empirical models are then established through curve fitting. By utilizing the Gumbel distribution as a template, the nexus between the probability density functions of turbulence intensity and gust factor is built, leading to the development of a generalized probabilistic model that statistically describe turbulence intensity and gust factor in TCs. Finally, these empirical models are validated using measured data and compared with suggestions recommended by specifications.

Probabilistic analysis of anisotropic rock slope with reinforcement measures

  • Zoran Berisavljevic;Dusan Berisavljevic;Milos Marjanovic;Svetlana Melentijevic
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-301
    • /
    • 2023
  • During the construction of E75 highway through Grdelica gorge in Serbia, a major failure occurred in the zone of reinforced rock slope. Excavation was performed in highly anisotropic Paleozoic schist rock formation. The reinforcement consisted of the two rows of micropile wall with pre-stressed anchors. Forces in anchors were monitored with load cells while benchmarks were installed for superficial displacement measurements. The aim of the study is to investigate possible causes of instability considering different probability distributions of the strength of discontinuities and anchor bond strength by applying different optimization techniques for finding the critical failure surface. Even though the deterministic safety factor value is close to unity, the probability of failure is governed by variability of shear strength of anisotropic planes and optimization method used for locating the critical sliding surface. The Cuckoo search technique produces higher failure probabilities compared to the others. Depending on the assigned statistical distribution of input parameters, various performance functions of the factor of safety are obtained. The probability of failure is insensitive to the variation of bond strength. Different sampling techniques should yield similar results considering that the sufficient number of safety factor evaluations is chosen to achieve converged solution.

Analysis of the Affecting Factors to the Peak Factor in Water Supply Facilities (우리나라 상수도시설의 첨두부하 영향요소 분석)

  • Hyun, In-hwan;Lee, Che-in
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.1
    • /
    • pp.49-58
    • /
    • 2004
  • This study is to analyze the affecting factors to the peak factor in the drinking water supply Facilities. The peak factor is a very important element to determine the capacity of the water supply facllities. Several factors such as Population served, average day water demand, ratio of domestic water use, ratio of affairs & business water use and water use per capital per day were selected as the affecting factors in this study. In this study, peak factor characteristics for Korean facilities were compared with those for Japanese ones. As a result, non-exceedance probability was suggested as the designing method for the peak factor. Also, the 50% non-exceedance probability values and the 90% values based on the 1998-1999 data were suggested in this study.

A Multiple Test of a Poisson Mean Parameter Using Default Bayes Factors (디폴트 베이즈인자를 이용한 포아송 평균모수에 대한 다중검정)

  • 김경숙;손영숙
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.2
    • /
    • pp.118-129
    • /
    • 2002
  • A multiple test of a mean parameter, λ, in the Poisson model is considered using the Bayes factor. Under noninformative improper priors, the intrinsic Bayes factor(IBF) of Berger and Pericchi(1996) and the fractional Bayes factor(FBF) of O'Hagan(1995) called as the default or automatic Bayes factors are used to select one among three models, M$_1$: λ< $λ_0, M$_2$: λ= $λ_0, M$_3$: λ> $λ_0. Posterior probability of each competitive model is computed using the default Bayes factors. Finally, theoretical results are applied to simulated data and real data.

A Comparative Study of Simplified Probabilistic Analysis Methods for Plane Failure of Rock Slope (암반사면의 평면파괴해석을 위한 간이 확률론적 해석 비교연구)

  • Kim, Youngmin
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.360-373
    • /
    • 2021
  • Many sources of uncertainty exist in geotechnical analysis ranging from the material parameters to the sampling and testing techniques. The conventional deterministic stability analysis of a plane failure in rock slope produce a safety factor but not a probability of failure or reliability index. In the conventional slope stability analysis by evaluating the ground uncertainty as an overall safety factor, it is difficult to evaluate the stability of the realistic rock slope in detail. This paper reviews some established probabilistic analysis techniques, such as the MCS, FOSM, PEM, Taylor Series as applied to plane failure of rock slopes in detail. While the Monte - Carlo methods leads to the most accurate calculation of the probability of safety, this method is too time consuming. Therefore, the simplified probability methods could be alternatives to the MCS. In this study, using these simple probability methods, the failure probability estimation of a plane failure in rock slope is presented.

A Marginal Probability Model for Repeated Polytomous Response Data

  • Choi, Jae-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.2
    • /
    • pp.577-585
    • /
    • 2008
  • This paper suggests a marginal probability model for analyzing repeated polytomous response data when some factors are nested in others in treatment structures on a larger experimental unit. As a repeated measures factor, time is considered on a smaller experimental unit. So, two different experiment sizes are considered. Each size of experimental unit has its own design structure and treatment structure, and the marginal probability model can be constructed from the structures for each size of experimental unit. Weighted least squares(WLS) methods are used for estimating fixed effects in the suggested model.

  • PDF

A Probabilistic Analysis on Logarithmic-Spiral Failure of Slope in Consideration of Load Variance (하중의 분산성을 고려한 대수누선사면 파괴의 확률론적 해석)

  • 정성관;권무남
    • Geotechnical Engineering
    • /
    • v.4 no.4
    • /
    • pp.39-50
    • /
    • 1988
  • Until now, most probabilistic approaches to the slope stability analysis have been accomplished on the arc failure surface without load. In this study, the relationships between the probability of failure and the safety factor are investigated when the shape of failure is logarithmic spiral on the homogeneous slope with ground water level, the probability distributions of the load and the strength parameter of soil being assumed as normal distribution, log-normal distribution and beta distribution. The results obtained are as follows; 1. For the same safety factor, the design of slope is more reasonable by using the probability of failure than by the safety factor because the probability of failure is increased as the coefficient of variation is increased. 2, The safety factor is more reasonably determined by the coefficient of variation of the strength parameter than by the field condition when the safety factor is applied to design of slope.

  • PDF

Methodology for Estimating the Probability of Damage to a Heat Transmission Pipe (열수송관 파손확률 추정 방법론 개발)

  • Kong, Myeongsik;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.15-21
    • /
    • 2021
  • Losses of both life and property increased from damage to underground pipe such as heat transmission pipe buried underground in downtown because pipes are gradually aging. Considering the characteristics of the heat transmission pipe, which is not exposed to the outside and difficult to immediately identify problems such as damage, it is realistic to indirectly check the condition of the facility based on the historical information that is periodically collected through facility maintenance. In this study, a methodology for estimating the damage probability was developed by examining the history information of the heat transmission pipe, deriving an evaluation factor that is related to the damage probability. The contribution factor of the damage probability were reviewed by analyzing not only the guidelines for maintenance of heat transmission pipe of advanced European countries and domestic district heating companies, but also the cases of waterworks with similar characteristics. Evaluation factors were selected by considering not only the correlation with the damage probability but also the possibility of securing data. Based on 1999, when the construction technology and standards of heat transmission pipe changed, the damage probability estimation function according to the period of use was divided into the case of being buried before 1998 and the case of being buried after 1999, and presented. In addition, the damage probability was corrected by assigning weights according to the measured data for each evaluation factor such as the diameter, use, and management authority.

Probabilistic tunnel face stability analysis: A comparison between LEM and LAM

  • Pan, Qiujing;Chen, Zhiyu;Wu, Yimin;Dias, Daniel;Oreste, Pierpaolo
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.399-406
    • /
    • 2021
  • It is a key issue in the tunnel design to evaluate the stability of the excavation face. Two efficient analytical models in the context of the limit equilibrium method (LEM) and the limit analysis method (LAM) are used to carry out the deterministic calculations of the safety factor. The safety factor obtained by these two models agrees well with that provided by the numerical modelling by FLAC 3D, but consuming less time. A simple probabilistic approach based on the Mote-Carlo Simulation technique which can quickly calculate the probability distribution of the safety factor was used to perform the probabilistic analysis on the tunnel face stability. Both the cumulative probabilistic distribution and the probability density function in terms of the safety factor were obtained. The obtained results show the effectiveness of this probabilistic approach in the tunnel design.

Probabilistic bearing capacity of circular footing on spatially variable undrained clay

  • Kouseya Choudhuri;Debarghya Chakraborty
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.93-106
    • /
    • 2024
  • The present paper investigates the spatial variability effect of soil property on the three-dimensional probabilistic characteristics of the bearing capacity factor (i.e., mean and coefficient of variation) of a circular footing resting on clayey soil where both mean and standard deviation of undrained shear strength increases with depth, keeping the coefficient of variation constant. The mean trend of undrained shear strength is defined by introducing the dimensionless strength gradient parameter. The finite difference method along with the random field and Monte Carlo simulation technique, is used to execute the numerical analyses. The lognormal distribution is chosen to generate random fields of the undrained shear strength. In the study, the potential failure of the structure is represented through the failure probability. The influences of different vertical scales of fluctuation, dimensionless strength gradient parameters, and coefficient of variation of undrained shear strength on the probabilistic characteristics of the bearing capacity factor and failure probability of the footing, along with the probability and cumulative density functions, are explored in this study. The variations of failure probability for different factors of safety corresponding to different parameters are also illustrated. The results are presented in non-dimensional form as they might be helpful to the practicing engineers dealing with this type of problem.