• Title/Summary/Keyword: Probabilistic safety analysis

Search Result 379, Processing Time 0.029 seconds

Probabilistic Analysis for Rock Slope Stability Due to Weathering Process (풍화작용에 따른 암반사면 안정성의 확률론적 해석)

  • Park, Hyuck-Jin;Woo, Ik;Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.357-366
    • /
    • 2009
  • Since weathering weakens the rock fabric and exaggerates any structural weakness, it affects mechanical properties as well as physical and chemical properties of rock. Weathering leads to a decrease in density, strength, friction angle and cohesion, and subsequently it affects negatively on the stability of rock slope. The purpose of the study is to investigate the changes of the rock slope stability caused by discontinuities which have different weathering grades. For that, the discontinuity samples which are divided into two different weathering grades are obtained from the field and tested their mechanical properties such as JCS, JRC and residual friction angle. In order to evaluate the effects on the stability of slope due to weathering, the deterministic analysis is carried out. That is, the factors of safety for planar failure are calculated for rock masses which have two different weathering grades, such as fresh and weathered rock mass. However, since the JRC and friction angle values are widely scattered and the deterministic analysis cannot consider the variation, the factors of safety cannot represent properly the stability of the rock slope. Therefore, the probabilistic analysis has been used to consider the scattered values. In the deterministic analysis, the factors of safety for the fresh discontinuity and weathered discontinuity are 1.25 and 1.0, respectively. The results indicate the fresh discontinuities are stable for planar failure and the weathered discontinuities are marginally stable. However, the probabilities of failure for the fresh discontinuity and weathered discontinuity are 25.6% and 45.9%, respectively. This shows that both discontinuities are analyzed as unstable in the probabilistic analysis.

A study on collision strength assessment of a jack-up rig with attendant vessel

  • Ma, Kuk Yeol;Kim, Jeong Hwan;Park, Joo Shin;Lee, Jae Myung;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.241-257
    • /
    • 2020
  • The rapid proliferation of oil/gas drilling and wind turbine installations with jack-up rig-formed structures increases structural safety requirements, due to the greater risks of operational collisions during use of these structures. Therefore, current industrial practices and regulations have tended to increase the required accidental collision design loads (impact energies) for jack-up rigs. However, the existing simplified design approach tends to be limited to the design and prediction of local members due to the difficulty in applying the increased uniform impact energy to a brace member without regard for the member's position. It is therefore necessary to define accidental load estimation in terms of a reasonable collision scenario and its application to the structural response analysis. We found by a collision probabilistic approach that the kinetic energy ranged from a minimum of 9 MJ to a maximum 1049 MJ. Only 6% of these values are less than the 35 MJ recommendation of DNV-GL (2013). This study assumed and applied a representative design load of 196.2 MN for an impact load of 20,000 tons. Based on this design load, the detailed design of a leg structure was numerically verified via an FE analysis comprising three categories: linear analysis, buckling analysis and progressive collapse analysis. Based on the numerical results from this analysis, it was possible to predict the collapse mode and position of each member in relation to the collision load. This study provided a collision strength assessment between attendant vessels and a jack-up rig based on probabilistic collision scenarios and nonlinear structural analysis. The numerical results of this study also afforded reasonable evaluation criteria and specific evaluation procedures.

A partial factors methodology for structural safety assessment in non-linear analysis

  • Castro, Paula M.R.P.;Delgado, Raimundo M.;Cesar de Sa, Jose M.A.
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.31-53
    • /
    • 2005
  • In the present structural codes the safety verification is based on a linear analysis of the structure and the satisfaction of ultimate and serviceability limit states, using a semi-probabilistic security format through the consideration of partial safety factors, which affect the action values and the characteristic values of the material properties. In this context, if a non-linear structural analysis is wanted a difficulty arises, because the global safety coefficient, which could be obtained in a straightforward way from the non-linear analysis, is not directly relatable to the different safety coefficient values usually used for the different materials, as is the case for reinforced concrete structures. The work here presented aims to overcome this difficulty by proposing a methodology that generalises the format of safety verification based on partial safety factors, well established in structural codes within the scope of linear analysis, for cases where non-linear analysis is needed. The methodology preserves the principal assumptions made in the codes as well as a reasonable simplicity in its use, including a realistic definition of the material properties and the structural behaviour, and it is based on the evaluation of a global safety coefficient. Some examples are presented aiming to clarify and synthesise all the options that were taken in the application of the proposed methodology, namely how to transpose the force distributions obtained with a non-linear analysis into design force distributions. One of the most important features of the proposed methodology, the ability for comparing the simplified procedures for second order effects evaluation prescribed in the structural codes, is also presented in a simple and systematic way. The potential of the methodology for the development and assessment of alternative and more accurate procedures to those already established in codes of practice, where non-linear effects must be considered, is also indicated.

The Development of a Human Reliability Analysis System for Safety Assessment of a Nuclear Power Plants (원자력 발전소 안전성 평가를 위한 인간 신뢰도 분석 방법론 개발 및 지원 시스템 구축)

  • Kim, Seung-Hwn;Jung, Won-Dea
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.261-267
    • /
    • 2006
  • In order to perform a probabilistic safety assessment (PSA), it requires a large number of data for various fields. And the quality of a PSA results have become more important thing of the risk assessment. As part of enhancing the PSA qualify, Korea Atomic Energy Research Institute is developing a full power Human Reliability Analysis (HRA) calculator to manage human failure events (HFEs) and to calculate the diagnosis human error probabilities and execution human error probabilities. This paper introduces the development process and an overview of a standard HRA method for nuclear power plants. The study was carried out in three stages; 1) development of the procedures and rules for a standard HRA method. 2) design of a system structure, 3) development of the HRA calculator.

  • PDF

Development of Fragility Curves for Seismic Stability Evaluation of Cut-slopes (지진에 대한 안전성 평가를 위한 깎기비탈면의 취약도 곡선 작성)

  • Park, Noh-Seok;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.29-41
    • /
    • 2017
  • There are uncertainties about the seismic load caused by seismic waves, which cannot be predicted due to the characteristics of the earthquake occurrence. Therefore, it is necessary to consider these uncertainties by probabilistic analysis. In this paper, procedures to develop a fragility curve that is a representative method to evaluate the safety of a structure by stochastic analysis were proposed for cut slopes. Fragility curve that considers uncertainties of soil shear strength parameters was prepared by Monte Carlo Simulation using pseudo static analysis. The fragility curve considering the uncertainty of the input ground motion was developed by performing time-history seismic analysis using selected 30 real ground input motions and the Newmark type displacement evaluation analysis. Fragility curves are represented as the cumulative probability distribution function with lognormal distribution by using the maximum likelihood estimation method.

Assessment of the Internal Pressure Fragility of the PWR Containment Building Using a Nonlinear Finite Element Analysis (비선형 유한요소 해석을 이용한 PWR 격납건물의 내압 취약도 평가)

  • Hahm, Daegi;Park, Hyung-Kui;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • In this study, the probabilistic internal pressure fragility analysis was performed by using the non-linear finite element analysis method. The target structure is one of the containment buildings of typical domestic pressurized water reactors(PWRs). The 3-dimensional finite element model of the containment building was developed with considering the large equipment hatches. To consider uncertainties in the material properties and structural capacities, we performed the sensitivity analysis of the ultimate pressure capacity with respect to the variation of four important uncertain parameters. The results of the sensitivity analysis were used to the selection of the probabilistic variables and the determination of their probabilistic parameters. To reflect the present condition of the tendon pre-stressing force, the data of the pre-stressing force acquired from the in-service inspections of tendon forces were used for the determination of the median value. Two failure modes(leak, rupture) were considered and their limit states were defined to assess the internal pressure fragility of target containment building. The internal pressure fragilities for each failure mode were evaluated in terms of median internal pressure capacity, high confidence low probability of failure(HCLPF) capacity, and fragility curves with respect to the confidence levels. The HCLPF capacity was 115.9 psig for leak failure mode, and 125.0 psig for rupture failure mode.

Evaluation of Probabilistic Fracture Mechanics for Reactor Pressure Vessel under SBLOCA (소규모 냉각재 상실사고하의 원자로 압력용기에 대한 확률론적 파괴역학 평가)

  • Kim, Jong Wook;Lee, Gyu Mahn;Kim, Tae Wan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.13-19
    • /
    • 2008
  • In order to predict a remaining life of a plant, it is necessary to select the components that are critical to the plant life. The remaining life of those components shall be evaluated by considering the aging effect of materials used as well as numerous factors. However, when evaluating reliability of nuclear structural components, some problems are quite formidable because of lack of information such as operating history, material property change and uncertainty in damage models. Accordingly, if structural integrity and safety are evaluated by the deterministic fracture mechanics approach, it is expected that the results obtained are too conservative to perform a rational evaluation of plant life. The probabilistic fracture mechanics approaches are regarded as appropriate methods to rationally evaluate the plant life since they can consider various uncertainties such as sizes and shapes of cracks and degradation of material strength due to the aging effects. The objective of this study is to evaluate the structural integrity for a reactor pressure vessel under the small break loss of coolant accident by applying the deterministic and probabilistic fracture mechanics. The deterministic fracture mechanics analysis was performed using the three dimensional finite element model. The probabilistic integrity analysis was based on the Monte Carlo simulation. The selected random variables are the neutron fluence on the vessel inside surface, the content of copper, nickel, and phosphorus in the reactor pressure vessel material, and initial RTNDT.

  • PDF

Probabilistic Risk Evaluation Method for Human-induced Disaster by Risk Curve Analysis (확률.통계적 리스크분석을 활용한 인적재난 위험평가 기법 제안)

  • Park, So-Soon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.57-68
    • /
    • 2009
  • Recently, damage scale of human-induced disaster is sharply increased but its occurrences and damages are so uncertain that it is hard to construct a resonable response & mitigation plan for infrastructures. Therefore, the needs for a advanced risk management technique based on a probabilistic and stochastic risk evaluation theory is increased. In this study, these evaluation methods were investigated and a advanced disaster risk evaluation method, which is based on the probabilistic or stochastic risk assessment theory and also is a quantitative evaluation technique, was suggested. With this method, the safety changes as the result of fire damage management for recent 40 years was analyzed. And the result was compared with that of Japan. Through the consilience of the traditional risk assessment method and this method, a stochastical estimation technique for the uncertainty of future disaster's damage could support a cost-effective information for a resonable decision making on disaster mitigation.

Evaluation of Pulley Durability Considering the Variation of the Fatigue Strength (피로강도 변동성을 고려한 Pulley의 내구성 평가)

  • Shim, Hee-Jin;Kim, Chul-Su;Oh, Won-Chul;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.394-399
    • /
    • 2004
  • In order to secure the safety of power steering system, it is necessary to perform the strength and the fatigue analysis of pulley in this paper. The applied stress distribution of the pulley subject to combined loads condition was obtained using finite element analysis. Based on these results, the fatigue life of the pulley with the variation of the fatigue strength was evaluated using durability analysis simulator. The optimal hole size to improved the safety of the pulley was investigated using parametric study. Moreover, the predicted fatigue life cycle with the simulator was verified by experimental tests.

  • PDF

A Study on FMEDA Process for SIL Certification : A Case Study of a Flame Scanner (SIL 인증을 위한 FMEDA 프로세스 연구 : 화염검출기 사례를 중심으로)

  • Kim, Sung Kyu;Kim, Yong Soo
    • IE interfaces
    • /
    • v.25 no.4
    • /
    • pp.422-430
    • /
    • 2012
  • In this article, we introduced the estimation method by 'Safety Integrity Level'(SIL) for the criterion of safety assurance and performed a case study on a flame scanner. SIL requires probabilistic evaluation of each set of equipment used to reduce risk in a safety related system. FMEDA(Failure Modes, Effects and Diagnostic Analysis) method is widely used to evaluate the safety levels and provides information on the failure rates and failure mode distributions necessary to calculate a diagnostic coverage factor for a part or a component. Basically, two parameters resulting from FMEDA are used for SIL classification of the device : SFF(Safe Failure Fraction) and PFD(Probability of Failure on Demand). In this case study, it is concluded that the flame scanner is designed to fulfill the condition of SIL 3 in the aspect of SFF and PFD.