• Title/Summary/Keyword: Probabilistic reliability evaluation

Search Result 169, Processing Time 0.023 seconds

Suggestion of an Evaluation Chart for Landslide Susceptibility using a Quantification Analysis based on Canonical Correlation (정준상관 기반의 수량화분석에 의한 산사태 취약성 평가기법 제안)

  • Chae, Byung-Gon;Seo, Yong-Seok
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.381-391
    • /
    • 2010
  • Probabilistic prediction methods of landslides which have been developed in recent can be reliable with premise of detailed survey and analysis based on deep and special knowledge. However, landslide susceptibility should also be analyzed with some reliable and simple methods by various people such as government officials and engineering geologists who do not have deep statistical knowledge at the moment of hazards. Therefore, this study suggests an evaluation chart of landslide susceptibility with high reliability drawn by accurate statistical approaches, which the chart can be understood easily and utilized for both specialists and non-specialists. The evaluation chart was developed by a quantification method based on canonical correlation analysis using the data of geology, topography, and soil property of landslides in Korea. This study analyzed field data and laboratory test results and determined influential factors and rating values of each factor. The quantification analysis result shows that slope angle has the highest significance among the factors and elevation, permeability coefficient, porosity, lithology, and dry density are important in descending order. Based on the score assigned to each evaluation factor, an evaluation chart of landslide susceptibility was developed with rating values in each class of a factor. It is possible for an analyst to identify susceptibility degree of a landslide by checking each property of an evaluation factor and calculating sum of the rating values. This result can also be used to draw landslide susceptibility maps based on GIS techniques.

A Study on LRFD Reliability Based Design Criteria of RC Flexural Members (R.C. 휨부재(部材)의 L.R.F.D. 신뢰성(信賴性) 설계기준(設計基準)에 관한 연구(研究))

  • Cho, Hyo Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.21-32
    • /
    • 1981
  • Recent trends in design standards development in some European countries and U.S.A. have encouraged the use of probabilistic limit sate design concepts. Reliability based design criteria such as LSD, LRFD, PBLSD, adopted in those advanced countries have the potentials that they afford for symplifying the design process and placing it on a consistent reliability bases for various construction materials. A reliability based design criteria for RC flexural members are proposed in this study. Lind-Hasofer's invariant second-moment reliability theory is used in the derivation of an algorithmic reliability analysis method as well as an iterative determination of load and resistance factors. In addition, Cornell's Mean First-Order Second Moment Method is employed as a practical tool for the approximate reliability analysis and the derivation of design criteria. Uncertainty measures for flexural resistance and load effects are based on the Ellingwood's approach for the evaluation of uncertainties of loads and resistances. The implied relative safety levels of RC flexural members designed by the strength design provisions of the current standard code were evaluated using the second moment reliability analysis method proposed in this study. And then, resistance and load factors corresponding to the target reliability index(${\beta}=4$) which is considered to be appropriate level of reliability considering our practices are calculated by using the proposed methods. These reliability based factors were compared to those specified by our current ultimate strength design provisions. It was found that the reliability levels of flexural members designed by current code are not appropriate, and the code specified resistance and load factors were considerably different from the reliability based resistance and load factors proposed in this study.

  • PDF

Application of Risk-Informed Methods to In-Service Piping Inspection in Framatome Type Nuclear Power Plants (프라마톰형 원전의 배관 가동중검사에 리스크 정보를 활용한 기법 적용)

  • Kim, Jin-Hoi;Lee, Jeong-Seok;Yun, Eun-Sub
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.311-317
    • /
    • 2014
  • The Pressurized water reactor owners group (PWROG) developed and applied a risk-informed in-service inspection (RI-ISI) program, as an alternative to the existing ASME Section XI' sampling inspection method. The RI-ISI programs enhance overall safety by focusing inspections of piping at high safety significance (HSS) locations where failure mechanisms are likely to be present. Additionally, the RI-ISI program can reduce nondestructive evaluation (NDE) exams, man-rem exposure for inspectors, and inspection time, among other benefits. The RI-ISI method of in-service piping inspection was applied to 3 units (KSNPs: Korea standard nuclear power plants) and is being deployed to the other units. In this paper, the results of RI-ISI for a Framatome type (France CPI) nuclear power plant are presented. It was concluded that application of RI-ISI to the plant could enhance and maintain plant safety, as well as provide the benefits of greater reliability.

Qualitative RBI Analysis in Considered with Uncertain Variables by Probabilistic Distribution (확률분포에 따른 불확실한 변수를 고려한 위험도기반의 정성적 평가)

  • Heo, Ho-Jin;Jeong, Jae-Uk;Kim, Joo-Dong;Choi, Jae-Boong;Choi, Song-Chun;Hwang, In-Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.70-78
    • /
    • 2013
  • Plants which are having conditions of high temperature and pressure always are exposed to danger. In order to prevent unexpected accidents, safety management that can effectively and appropriately examine facilities is required in plant operation. RBI(Risk-Based Inspection) technology in API 581 is one of standard management technique for evaluating risk on petroleum plants. There are qualitative and quantitative assessments in RBI methodology. Quantitative evaluation step is complex and required much information, so high-risk facilities in plant are selected firstly by qualitative method. Qualitative RBI is performed by choosing the answer in prepared questionnaire. However, it is difficult to believe thoroughly results from survey including ambiguous information. In this study, the procedure of qualitative RBI analysis with considering probability distribution concept were proposed by using Monte Carlo simulation method in order to increase reliability in spite of uncertain factors. In addition, qualitative risk of cooling system for LNG plant was evaluated using proposed procedure. Although 20 items of total 39 assessment items are applied to uncertain factors, risk section of high probability(89%) were verified. The detailed results were described in manuscript.

Evaluation of the Uncertainties in Rainfall-Runoff Model Using Meta-Gaussian Approach (Meta-Gaussian 방법을 이용한 강우-유출 모형에서의 불확실성 산정)

  • Kim, Byung-Sik;Kim, Bo-Kyung;Kwon, Hyun-Han
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.49-64
    • /
    • 2009
  • Rainfall-runoff models are used for efficient management, distribution, planning, and design of water resources in accordance with the process of hydrologic cycle. The models simplify the transition of rainfall to runoff as rainfall through different processes including evaporation, transpiration, interception, and infiltration. As the models simplify complex physical processes, gaps between the models and actual rainfall events exist. For more accurate simulation, appropriate models that suit analysis goals are selected and reliable long-term hydrological data are collected. However, uncertainty is inherent in models. It is therefore necessary to evaluate reliability of simulation results from models. A number of studies have evaluated uncertainty ingrained in rainfall-runoff models. In this paper, Meta-Gaussian method proposed by Montanari and Brath(2004) was used to assess uncertainty of simulation outputs from rainfall-runoff models. The model, which estimates upper and lower bounds of the confidence interval from probabilistic distribution of a model's error, can quantify global uncertainty of hydrological models. In this paper, Meta-Gaussian method was applied to analyze uncertainty of simulated runoff outputs from $Vflo^{TM}$, a physically-based distribution model and HEC-HMS model, a conceptual lumped model.

  • PDF

Development of a Fire Human Reliability Analysis Procedure for Full Power Operation of the Korean Nuclear Power Plants (국내 전출력 원전 적용 화재 인간신뢰도분석 절차 개발)

  • Choi, Sun Yeong;Kang, Dae Il
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.87-96
    • /
    • 2020
  • The purpose of this paper is to develop a fire HRA (Human Reliability Analysis) procedure for full power operation of domestic NPPs (Nuclear Power Plants). For the development of fire HRA procedure, the recent research results of NUREG-1921 in an effort to meet the requirements of the ASME/ANS PRA Standard were reviewed. The K-HRA method, a standard method for HRA of a domestic level 1 PSA (Probabilistic Safety Assessment) and fire related procedures in domestic NPPs were reviewed. Based on the review, a procedure for the fire HRA required for a domestic fire PSA based on the K-HRA method was developed. To this end, HRA issues such as new operator actions required in the event of a fire and complexity of fire situations were considered. Based on the four kinds of HFE (Human Failure Event) developed for a fire HRA in this research, a qualitative analysis such as feasibility evaluation was suggested. And also a quantitative analysis process which consists of screening analysis and detailed analysis was proposed. For the qualitative analysis, a screening analysis by NUREG-1921 was used. In this research, the screening criteria for the screening analysis was modified to reduce vague description and to reflect recent experimental results. For a detailed analysis, the K-HRA method and scoping analysis by NUREG-1921 were adopted. To apply K-HRA to fire HRA for quantification, efforts to modify PSFs (Performance Shaping Factors) of K-HRA to reflect fire situation and effects were made. For example, an absence of STA (Shift Technical Advisor) to command a fire brigade at a fire area is considered and the absence time should be reflected for a HEP (Human Error Probability) quantification. Based on the fire HRA procedure developed in this paper, a case study for HEP quantification such as a screening analysis and detailed analysis with the modified K-HRA was performed. It is expected that the HRA procedure suggested in this paper will be utilized for fire PSA for domestic NPPs as it is the first attempt to establish an HRA process considering fire effects.

Development of Intelligent Database Program for PSI/ISI Data Management of Nuclear Power Plant (원자력발전소 PSI/ISI 데이터 관리를 위한 지능형 데이터 베이스 프로그램 개발)

  • Park, Un-Su;Park, Ik-Keun;Um, Byong-Guk;Park, Yun-Won;Kang, Suk-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.5
    • /
    • pp.389-397
    • /
    • 1998
  • For an effective and efficient management of large amounts of preservice/inservice inspection(PSI/ISI) data in nuclear power plants, an intellegent Windows 95-based data management program was developed. This program enables the prompt extraction of previously conducted PSI/ISI conditions and results so that the time-consuming data management, painstaking data processing and analysis in the past are avoided. The program extracts, and the associated remedies. Furthermore, additional inspection data and comments can be easily added or deleted for subsequent PSI/ISI operation. Although the initial version of the program was applied to Kori nuclear power plant, this program can be equally applied to other nuclear power plant. And also this program can be used to offer the fundamental data for application of evaluation data related to fracture mechanics analysis(FMA), probabilistic reliability assessment(PRA) of PSI/ISI results, performance demonstration initiative(PDI) and risk-informed ISI based on probability of detection(POD) information of ultrasonic examination. Besides, the program can be further developed as a unique PSI/ISI data management expert system that can be apart of PSI/ISI data management expert system that can be a part of PSI/ISI Total Support System(TSS) for Korean nuclear power plants.

  • PDF

Development of comprehensive earthquake loss scenarios for a Greek and a Turkish city: seismic hazard, geotechnical and lifeline aspects

  • Pitilakis, Kyriazis D.;Anastasiadis, Anastasios I.;Kakderi, Kalliopi G.;Manakou, Maria V.;Manou, Dimitra K.;Alexoudi, Maria N.;Fotopoulou, Stavroula D.;Argyroudis, Sotiris A.;Senetakis, Kostas G.
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.207-232
    • /
    • 2011
  • The development of reliable earthquake mitigation plans and seismic risk management procedures can only be based on the establishment of comprehensive earthquake hazard and loss scenarios. Two cities, Grevena (Greece) and D$\ddot{u}$zce (Turkey), were used as case studies in order to apply a comprehensive methodology for the vulnerability and loss assessment of lifelines. The methodology has the following distinctive phases: detailed inventory, identification of the typology of each component and system, evaluation of the probabilistic seismic hazard, geotechnical zonation, ground response analysis and estimation of the spatial distribution of seismic motion for different seismic scenarios, vulnerability analysis of the exposed elements at risk. Estimating adequate earthquake scenarios for different mean return periods, and selecting appropriate vulnerability functions, expected damages of the water and waste water systems in D$\ddot{u}$zce and of the roadway network and waste water system of Grevena are estimated and discussed; comparisons with observed earthquake damages are also made in the case of D$\ddot{u}$zce, proving the reliability and the efficiency of the proposed methodology. The results of the present study constitute a sound basis for the development of efficient loss scenarios for lifelines and infrastructure facilities in seismic prone areas. The first part of this paper, concerning the estimation of the seismic ground motions, has been utilized in the companion paper by Kappos et al. (2010) in the same journal.

Microstructure, Tensile Strength and Probabilistic Fatigue Life Evaluation of Gray Cast Iron (회주철의 미세구조와 인장거동 분석 및 확률론적 피로수명평가)

  • Sung, Yong Hyeon;Han, Seung-Wook;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.721-728
    • /
    • 2017
  • High-grade gray cast iron (HCI350) was prepared by adding Cr, Mo and Cu to the gray cast iron (GC300). Their microstructure, mechanical properties and fatigue strength were studied. Cast iron was made from round bar and plate-type castings, and was cut and polished to measure the percentage of each microstructure. The size of flake graphite decreased due to additives, while the structure of high density pearlite increased in volume percentage improving the tensile strength and fatigue strength. Based on the fatigue life data obtained from the fatigue test results, the probability - stress - life (P-S-N) curve was calculated using the 2-parameter Weibull distribution to which the maximum likelihood method was applied. The P-S-N curve showed that the fatigue strength of HCI350 was significantly improved and the dispersion of life data was lower than that of GC300. However, the fatigue life according to fatigue stress alleviation increased further. Data for reliability life design was presented by quantitatively showing the allowable stress value for the required life cycle number using the calculated P-S-N curve.