• Title/Summary/Keyword: Probabilistic methods

Search Result 581, Processing Time 0.029 seconds

Pedestrian-Based Variational Bayesian Self-Calibration of Surveillance Cameras (보행자 기반의 변분 베이지안 감시 카메라 자가 보정)

  • Yim, Jong-Bin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1060-1069
    • /
    • 2019
  • Pedestrian-based camera self-calibration methods are suitable for video surveillance systems since they do not require complex calibration devices or procedures. However, using arbitrary pedestrians as calibration targets may result in poor calibration accuracy due to the unknown height of each pedestrian. To solve this problem in the real surveillance environments, this paper proposes a novel Bayesian approach. By assuming known statistics on the height of pedestrians, we construct a probabilistic model that takes into account uncertainties in both the foot/head locations and the pedestrian heights, using foot-head homology. Since solving the model directly is infeasible, we use variational Bayesian inference, an approximate inference algorithm. Accordingly, this makes it possible to estimate the height of pedestrians and to obtain accurate camera parameters simultaneously. Experimental results show that the proposed algorithm is robust to noise and provides accurate confidence in the calibration.

Mid-Term Energy Demand Forecasting Using Conditional Restricted Boltzmann Machine (조건적 제한된 볼츠만머신을 이용한 중기 전력 수요 예측)

  • Kim, Soo-Hyun;Sun, Young-Ghyu;Lee, Dong-gu;Sim, Is-sac;Hwang, Yu-Min;Kim, Hyun-Soo;Kim, Hyung-suk;Kim, Jin-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.127-133
    • /
    • 2019
  • Electric power demand forecasting is one of the important research areas for future smart grid introduction. However, It is difficult to predict because it is affected by many external factors. Traditional methods of forecasting power demand have been limited in making accurate prediction because they use raw power data. In this paper, a probability-based CRBM is proposed to solve the problem of electric power demand prediction using raw power data. The stochastic model is suitable to capture the probabilistic characteristics of electric power data. In order to compare the mid-term power demand forecasting performance of the proposed model, we compared the performance with Recurrent Neural Network(RNN). Performance comparison using electric power data provided by the University of Massachusetts showed that the proposed algorithm results in better performance in mid-term energy demand forecasting.

ORIGIN AND STATUS OF LOW-MASS CANDIDATE HYPERVELOCITY STARS

  • Yeom, Bum-Suk;Lee, Young Sun;Koo, Jae-Rim;Beers, Timothy C.;Kim, Young Kwang
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.3
    • /
    • pp.57-69
    • /
    • 2019
  • We present an analysis of the chemical abundances and kinematics of six low-mass dwarf stars, previously claimed to be candidate hypervelocity stars (HVSs). We obtained moderate-resolution (R ~ 6000) spectra of these stars to estimate the abundances of several chemical elements (Mg, Si, Ca, Ti, Cr, Fe, and Ni), and derived their space velocities and orbital parameters using proper motions from the Gaia Data Release 2. All six stars are shown to be bound to the Milky Way, and in fact are not even considered high-velocity stars with respect to the Galactic rest frame. Nevertheless, we attempt to characterize their parent Galactic stellar components by simultaneously comparing their element abundance patterns and orbital parameters with those expected from various Galactic stellar components. We find that two of our program stars are typical disk stars. For four stars, even though their kinematic probabilistic membership assignment suggests membership in the Galactic disk, based on their distinct orbital properties and chemical characteristics, we cannot rule out exotic origins as follows. Two stars may be runaway stars from the Galactic disk. One star has possibly been accreted from a disrupted dwarf galaxy or dynamically heated from a birthplace in the Galactic bulge. The last object may be either a runaway disk star or has been dynamically heated. Spectroscopic follow-up observations with higher resolution for these curious objects will provide a better understanding of their origin.

Simulation Study on Search Strategies for the Reconnaissance Drone (정찰 드론의 탐색 경로에 대한 시뮬레이션 연구)

  • Choi, Min Woo;Cho, Namsuk
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.1
    • /
    • pp.23-39
    • /
    • 2019
  • The use of drone-bots is demanded in times regarding the reduction of military force, the spread of the life-oriented thought, and the use of innovative technology in the defense through the fourth industrial revolution. Especially, the drone's surveillance and reconnaissance are expected to play a big role in the future battlefield. However, there are not many cases in which the concept of operation is studied scientifically. In this study, We propose search algorithms for reconnaissance drone through simulation analysis. In the simulation, the drone and target move linearly in continuous space, and the target is moving adopting the Random-walk concept to reflect the uncertainty of the battlefield. The research investigates the effectiveness of existing search methods such as Parallel and Spiral Search. We analyze the probabilistic analysis for detector radius and the speed on the detection probability. In particular, the new detection algorithms those can be used when an enemy moves toward a specific goal, PS (Probability Search) and HS (Hamiltonian Search), are introduced. The results of this study will have applicability on planning the path for the reconnaissance operations using drone-bots.

Association Between Burnout and Intention to Emigrate in Peruvian health-care Workers

  • Anduaga-Beramendi, Alexander;Beas, Renato;Maticorena-Quevedo, Jesus;Mayta-Tristan, Percy
    • Safety and Health at Work
    • /
    • v.10 no.1
    • /
    • pp.80-86
    • /
    • 2019
  • Background: Emigration of health-care workers is a problem within global health systems which affects many countries, including Peru. Several factors have caused health-care workers to emigrate, including burnout syndrome (BS). This study aims to identify the association between BS and its dimensions with the intention of physicians and nurses to emigrate from Peru in 2014. Methods: A cross-sectional study, based on a secondary analysis of the National Survey of Health Users (ENSUSALUD - 2014) was conducted. Sampling was probabilistic, considering the 24 departments of Peru. We include the questionnaire for physicians and nurses, accounting for 5062 workers. BS was measured by the Maslach Burnout Inventory-Human Services Survey. Adjusted odds ratio (OR) was calculated using multiple logistic regression. Results: Of the study population, 44.1% were physicians, 37.7% males, and 23.1% were working in Lima. It was found that 2.8% [95% confidence interval (CI): 2.19-3.45] of health-care workers had BS. The overall prevalence of intention to emigrate among health-care workers was 7.4% (95% CI: 6.36-8.40). Association was found between BS and intention to emigrate in Peruvian health-care workers (OR = 2.15; 95% CI: 1.05-4.40). Emotional exhaustion was the BS dimension most associated with intention to emigrate (OR = 1.80; 95% CI: 1.16-2.78). Conclusion: Physicians and nurses from Peru who suffered from BS were more likely to have intention to emigrate. Policies should be established to reduce BS as a strategy to control "brain drain" from health-care workers of Peru.

A Risk Assessment Method using Disaster Influence Factors on Construction Project (건설 프로젝트의 재해영향요인 기반 위험성 평가방법)

  • Yu, Yong-Sin;Choi, Jae-Wook;Kim, Tae-Wan;Lee, Chansik
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.6
    • /
    • pp.3-12
    • /
    • 2019
  • Current risk assessment methods typically determine accident risks embedded in construction projects by combining severity and frequency; however, they do not reflect the characteristics of construction projects. To solve the problem, this study aims to develop a novel risk assessment method that combines severity, frequency, and disaster influence factors (i.e., weather conditions and worker's characteristics) for assessing risks of activities occurring on a construction site actually. In this study, a severity was estimated by death against victims, and a frequency was estimated by the victim rate. The frequency was then converted to probability taking disaster influence factors into account. Thus, instead of considering severity and frequency for assessing the original risks (RO), the proposed method uses severity and probability to yield adjusted risks (RA) for each activity. A case study was conducted to determine if the proposed method works as intended in a real setting. The results show that RA is more sensitive to disaster influence factors than RO and, therefore, is able to assess the actual risks reflecting the working environment and conditions of a construction site. This study contributes to risk management of construction projects by offering a risk assessment method that measures a possibility of potential disasters from the probabilistic perspective. This method would help project managers assess accident risks in a more systematic and quantitative manner.

Stochastic analysis of the rocking vulnerability of irregular anchored rigid bodies: application to soils of Mexico City

  • Ramos, Salvador;Arredondo, Cesar;Reinoso, Eduardo;Leonardo-Suarez, Miguel;Torres, Marco A.
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.71-86
    • /
    • 2021
  • This paper focuses on the development and assessment of the expected damage for the rocking response of rigid anchored blocks, with irregular geometry and non-uniform mass distribution, considering the site conditions and the seismicity of Mexico City. The non-linear behavior of the restrainers is incorporated to evaluate the pure tension and tension-shear failure mechanisms. A probabilistic framework is performed covering a wide range of block sizes, slenderness ratios and eccentricities using physics-based ground motion simulation. In order to incorporate the uncertainties related to the propagation of far-field earthquakes with a significant contribution to the seismic hazard at study sites, it was simulated a set of scenarios using a stochastic summation methods of small-earthquakes records, considered as Empirical Green's Function (EGFs). As Engineering Demand Parameter (EDP), the absolute value of the maximum block rotation normalized by the body slenderness, as a function of the peak ground acceleration (PGA) is adopted. The results show that anchorages are more efficient for blocks with slenderness ratio between two and three, while slenderness above four provide a better stability when they are not restrained. Besides, there is a range of peak intensities where anchored blocks located in soft soils are less vulnerable with respect to those located in firm soils. The procedure used in here allows to take decisions about risk, reliability and resilience assessment of different types of contents, and it is easily adaptable to other seismic environments.

Fragility-based performance evaluation of mid-rise reinforced concrete frames in near field and far field earthquakes

  • Ansari, Mokhtar;Safiey, Amir;Abbasi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.751-763
    • /
    • 2020
  • Available records of recent earthquakes show that near-field earthquakes have different characteristics than far-field earthquakes. In general, most of these unique characteristics of near-fault records can be attributed to their forward directivity. This phenomenon causes the records of ground motion normal to the fault to entail pulses with long periods in the velocity time history. The energy of the earthquake is almost accumulated in these pulses causing large displacements and, accordingly, severe damages in the building. Damage to structures caused by past earthquakes raises the need to assess the chance of future earthquake damage. There are a variety of methods to evaluate building seismic vulnerabilities with different computational cost and accuracy. In the meantime, fragility curves, which defines the possibility of structural damage as a function of ground motion characteristics and design parameters, are more common. These curves express the percentage of probability that the structural response will exceed the allowable performance limit at different seismic intensities. This study aims to obtain the fragility curve for low- and mid-rise structures of reinforced concrete moment frames by incremental dynamic analysis (IDA). These frames were exposed to an ensemble of 18 ground motions (nine records near-faults and nine records far-faults). Finally, after the analysis, their fragility curves are obtained using the limit states provided by HAZUS-MH 2.1. The result shows the near-fault earthquakes can drastically influence the fragility curves of the 6-story building while it has a minimal impact on those of the 3-story building.

Trend Analysis of School Health Research using Latent Semantic Analysis (잠재의미분석방법을 통한 학교보건 연구동향 분석)

  • Shin, Seon-Hi;Park, Youn-Ju
    • Journal of the Korean Society of School Health
    • /
    • v.33 no.3
    • /
    • pp.184-193
    • /
    • 2020
  • Purpose: This study was designed to investigate the trends in school health research in Korea using probabilistic latent semantic analysis. The study longitudinally analyzed the abstracts of the papers published in 「The Journal of the Korean Society of School Health」 over the recent 17 years, which is between 2004 and August 2020. By classifying all the papers according to the topics identified through the analysis, it was possible to see how the distribution of the topics has changed over years. Based on the results, implications for school health research and educational uses of latent semantic analysis were suggested. Methods: This study investigated the research trends by longitudinally analyzing journal abstracts using latent dirichlet allocation (LDA), a type of LSA. The abstracts in 「The Journal of the Korean Society of School Health」 published from 2004 to August 2020 were used for the analysis. Results: A total of 34 latent topics were identified by LDA. Six topics, which were「Adolescent depression and suicide prevention」, 「Students' knowledge, attitudes, & behaviors」, 「Effective self-esteem program through depression interventions」, 「Factors of students' stress」, 「Intervention program to prevent adolescent risky behaviors」, and 「Sex education curriculum, and teacher」were most frequently covered by the journal. Each of them was dealt with in at least 20 papers. The topics related to 「Intervention program to prevent adolescent risky behaviors」, 「Effective self-esteem program through depression interventions」, and 「Preventive vaccination and factors of effective vaccination」 appeared repeatedly over the most recent 5 years. Conclusion: This study introduced an AI-powered analysis method that enables data-centered objective text analysis without human intervention. Based on the results, implications for school health research were presented, and various uses of latent semantic analysis (LSA) in educational research were suggested.

Approximate Multiplier With Efficient 4-2 Compressor and Compensation Characteristic (효율적인 4-2 Compressor와 보상 특성을 갖는 근사 곱셈기)

  • Kim, Seok;Seo, Ho-Sung;Kim, Su;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.173-180
    • /
    • 2022
  • Approximate Computing is a promising method for designing hardware-efficient computing systems. Approximate multiplication is one of key operations used in approximate computing methods for high performance and low power computing. An approximate 4-2 compressor can implement hardware-efficient circuits for approximate multiplication. In this paper, we propose an approximate multiplier with low area and low power characteristics. The proposed approximate multiplier architecture is segmented into three portions; an exact region, an approximate region, and a constant correction region. Partial product reduction in the approximation region are simplified using a new 4:2 approximate compressor, and the error due to approximation is compensated using a simple error correction scheme. Constant correction region uses a constant calculated with probabilistic analysis for reducing error. Experimental results of 8×8 multiplier show that the proposed design requires less area, and consumes less power than conventional 4-2 compressor-based approximate multiplier.