• Title/Summary/Keyword: Probabilistic design

Search Result 684, Processing Time 0.027 seconds

Evaluation of Spatial Distribution of Secondary Compression of Songdo Marine Clay by Probabilistic Method (확률론적 방법을 이용한 인천송도지반 이차압축침하량의 공간적 분포 평가)

  • Kim, Dong-Hee;Bae, Kyung-Doo;Ko, Seong-Kwon;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.9
    • /
    • pp.25-35
    • /
    • 2010
  • Settlement at reclamation area caused by secondary compression should be considered using spatial evaluating method because the thickness of consolidation layer varies at every location. Probabilistic method can be implemented to evaluate uncertainty of spatial distribution of secondary compression. This study spatially evaluated mean and standard deviation of secondary compression in the overall analyzing region using spatial distribution of consolidation thickness estimated by ordinary kriging method and statistical values of soil properties. And then, the area where secondary compression exceeds a design criterion at the specific time was evaluated using probabilistic method. It was observed that the area exceeding the design criterion increased as the variability of $C_{\alpha}/(1+e_o)$ increased or the probabilistic design criterion 0: decreased. It is considered that the probabilistic method can be used for the geotechnical design of soft ground when a probabilistic design criterion is established in the specification.

Probabilistic tunnel face stability analysis: A comparison between LEM and LAM

  • Pan, Qiujing;Chen, Zhiyu;Wu, Yimin;Dias, Daniel;Oreste, Pierpaolo
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.399-406
    • /
    • 2021
  • It is a key issue in the tunnel design to evaluate the stability of the excavation face. Two efficient analytical models in the context of the limit equilibrium method (LEM) and the limit analysis method (LAM) are used to carry out the deterministic calculations of the safety factor. The safety factor obtained by these two models agrees well with that provided by the numerical modelling by FLAC 3D, but consuming less time. A simple probabilistic approach based on the Mote-Carlo Simulation technique which can quickly calculate the probability distribution of the safety factor was used to perform the probabilistic analysis on the tunnel face stability. Both the cumulative probabilistic distribution and the probability density function in terms of the safety factor were obtained. The obtained results show the effectiveness of this probabilistic approach in the tunnel design.

Study on the Scenario Earthquake Determining Methods Based on the Probabilistic Seismic Hazard Analysis (확률론적 지진재해도를 이용한 시나리오 지진의 결정기법에 관한 연구)

  • Choi, In-Kil;Nakajima, Masato;Choun, Young-Sun;Yun, Kwan-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.23-29
    • /
    • 2004
  • The design earthquake used for the seismic analysis and design of NPP (Nuclear Power Plant) is determined by the deterministic or probabilistic methods. The probabilistic seismic hazard analysis(PSHA) for the nuclear power plant sites was performed for the probabilistic seismic risk assessment. The probabilistic seismic hazard analysis for the nuclear power plant site had been completed as a part of the probabilistic seismic risk assessment. The probabilistic method become a resonable method to determine the design earthquakes for NPPs. In this study, the defining method of the probability based scenario earthquake was established, and as a sample calculation, the probability based scenario earthquakes were estimated by the de-aggregation of the probabilistic seismic hazard. By using this method, it is possible to define the probability based scenario earthquakes for the seismic design and seismic safety evaluation of structures. It is necessary to develop the rational seismic source map and the attenuation equations for the development of reasonable scenario earthquakes.

Method for determining the design load of an aluminium handrail on an offshore platform

  • Kim, Yeon Ho;Park, Joo Shin;Lee, Dong Hun;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.511-525
    • /
    • 2021
  • Aluminium outfitting is widely used in offshore platforms owing to its anti-corrosion ability and its light weight. However, various standards exist (ISO, NORSOK and EN) for the design of handrails used in offshore platforms, and different suppliers have different criteria. This causes great confusion for designers. Moreover, the design load required by the standards is not clearly defined or is uncertain. Thus, many offshore projects reference previous project details or are conservatively designed without additional clarification. In this study, all of the codes and standards were reviewed and analysed through prior studies, and data on variable factors that directly and indirectly affect the handrails applied to offshore platforms were analysed. A total of 50 handrail design load scenarios were proposed through deterministic and probabilistic approaches. To verify the proposed new handrail design load selection scenario, structural analysis was performed using SACS (offshore structural analysis software). This new proposal through deterministic and probabilistic approaches is expected to improve safety by clarifying the purpose of the handrails. Furthermore, the acceptance criteria for probabilistic scenarios for handrails suggest considering the frequency of handrail use and the design life of offshore platforms to prevent excessive design. This study is expected to prevent trial and error in handrail design while maintaining overall worker safety by applying a loading scenario suitable for the project environment to enable optimal handrail design.

Probabilistic optimal safety valuation based on stochastic finite element analysis of steel cable-stayed bridges

  • Han, Sung-Ho;Bang, Myung-Seok
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.89-110
    • /
    • 2012
  • This study was intended to efficiently perform the probabilistic optimal safety assessment of steel cable-stayed bridges (SCS bridges) using stochastic finite element analysis (SFEA) and expected life-cycle cost (LCC) concept. To that end, advanced probabilistic finite element algorithm (APFEA) which enables to execute the static and dynamic SFEA considering aleatory uncertainties contained in random variable was developed. APFEA is the useful analytical means enabling to conduct the reliability assessment (RA) in a systematic way by considering the result of SFEA based on linearity and nonlinearity of before or after introducing initial tensile force. The appropriateness of APFEA was verified in such a way of comparing the result of SFEA and that of Monte Carlo Simulation (MCS). The probabilistic method was set taking into account of analytical parameters. The dynamic response characteristic by probabilistic method was evaluated using ASFEA, and RA was carried out using analysis results, thereby quantitatively calculating the probabilistic safety. The optimal design was determined based on the expected LCC according to the results of SFEA and RA of alternative designs. Moreover, given the potential epistemic uncertainty contained in safety index, failure probability and minimum LCC, the sensitivity analysis was conducted and as a result, a critical distribution phase was illustrated using a cumulative-percentile.

Shape Optimization of HDD Head Slider for Enhancing Reliabilities (신뢰성 향상을 위한 HDD용 헤드 슬라이더의 형상최적설계)

  • 윤상준;최병렬;최동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.753-758
    • /
    • 2004
  • This study is to suggest a probabilistic design determining configurations of slider air bearings with the dimensional manufacturing tolerances of the ABS. The probabilistic design problem is formulated to minimize the variation in flying height from a target value while satisfying the desired probabilities keeping the pitch and roll angles within suitable range. The proposed approach first solves the deterministic optimization problem. Then, beginning with this solution, the RBDO is continued with the probabilistic constraints affected by the random variables with a fixed standard deviation in normal distribution. The RBDO results are directly compared with the values of the initial design and the results of the deterministic optimization, respectively. The reliability analyses are performed by the descriptive sampling (DS) to show the effectiveness and accuracy of the proposed approach. It is demonstrated that the proposed RBDO approach can efficiently obtain an optimum solution satisfying all the desired probabilistic constraints.

  • PDF

Shape Optimization of HDD Head Slider for Enhancing Reliabilities (신뢰성 향상을 위한 HDD용 헤드 슬라이더의 형상최적설계)

  • 최병렬;최동훈;윤상준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.695-701
    • /
    • 2004
  • This study is to suggest a Probabilistic design determining configurations of slider air bearings with the dimensional manufacturing tolerances of the ABS. The probabilistic design problem is formulated to minimize the variation in flying height from a target value while satisfying the desired probabilities keeping the pitch and roll angles within a suitable range. The proposed approach first selves the deterministic optimization problem. Then, beginning with this solution, the RBDO is continued with the probabilistic constraints affected by the random variables with a fixed standard deviation in normal distribution. The RBDO results are directly compared with the values of the initial design and the results of the deterministic optimization, respectively. The reliability analyses are performed by the descriptive sampling (DS) to show the effectiveness and accuracy of the proposed approach. It is demonstrated that the Proposed RBDO approach can efficiently obtain an optimum solution satisfying all the desired probabilistic constraints.

Probabilistic Analysis of Equivalent Uniformly Distributed Live Loads (등가등분포 적재하중의 확률론적 분석)

  • 김상효;정시현;조형근
    • Computational Structural Engineering
    • /
    • v.2 no.2
    • /
    • pp.93-99
    • /
    • 1989
  • Since 1960's, structural engineers have recognized that the inherent random nature of loadings and materials as well as the imperfect structural analysis may be important factors in the structural safety evaluation. Based on the successful developments of the reliability-based structural analysis and design, the design criteria of the standards are recently developed(or modified) in the light of the probabilistic concepts. To develop the probability - based criteria for the domestic buildings, the probabilistic characteristic of loadings acting on structures should be defined first. In this study, therefore, live load data on apartment buildings have been collected and analyzed in systematic manner, and their probabilistic characteristics have been studied. Based on the results, the lifetime extreme values are computed and compared with current design loads. More rational design loads are suggested, which are more consistent in the probabilistic concepts.

  • PDF

Probabilistic multi-objective optimization of a corrugated-core sandwich structure

  • Khalkhali, Abolfazl;Sarmadi, Morteza;Khakshournia, Sharif;Jafari, Nariman
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.709-726
    • /
    • 2016
  • Corrugated-core sandwich panels are prevalent for many applications in industries. The researches performed with the aim of optimization of such structures in the literature have considered a deterministic approach. However, it is believed that deterministic optimum points may lead to high-risk designs instead of optimum ones. In this paper, an effort has been made to provide a reliable and robust design of corrugated-core sandwich structures through stochastic and probabilistic multi-objective optimization approach. The optimization is performed using a coupling between genetic algorithm (GA), Monte Carlo simulation (MCS) and finite element method (FEM). To this aim, Prob. Design module in ANSYS is employed and using a coupling between optimization codes in MATLAB and ANSYS, a connection has been made between numerical results and optimization process. Results in both cases of deterministic and probabilistic multi-objective optimizations are illustrated and compared together to gain a better understanding of the best sandwich panel design by taking into account reliability and robustness. Comparison of results with a similar deterministic optimization study demonstrated better reliability and robustness of optimum point of this study.

Review of Evaluation Method for Nuclear Power Plant Pipings under Beyond Design Basis Earthquake Condition (설계기준초과지진에 대한 원전 배관 평가 방법 검토)

  • Lee, Dae Young;Park, Heung Bae;Kim, Jin Weon;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.56-61
    • /
    • 2016
  • After Japanese Fukushima nuclear power plant accident caused by the beyond design basis earthquake and tsunami, it has turned to be a major challenge for nuclear safety. IAEA, US NRC and EU have provided new safety design standards for beyond design basis event, Domestic regulatory bodies have also enacted guidances for licensees and applicants on additional methods related to beyond design basis events. This paper describes several evaluation methods for applying to nuclear power plants piping for beyond design basis earthquake. As a results, energy method based on the absorbed energy on nuclear power plant, deterministic method following design code and theory, experience method considering past earthquake data and information and probabilistic methods similar to probabilistic risk assessment were reviewed.