• Title/Summary/Keyword: Probabilistic data association filter (PDAF)

Search Result 12, Processing Time 0.03 seconds

Multi-Target Tracking Using IMM-PDAF with Marine Radar Data (해상 레이더 데이터를 이용한 IMM-PDAF 기반 다중 객체 추적)

  • Tae-Hoon Yoo;Hyeon-Tae Bang;Won-keun Youn
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.5
    • /
    • pp.640-649
    • /
    • 2024
  • In this study, we introduce an interactive multi-model-probabilistic data association filter (IMM-PDAF), a multi-target tracking algorithm that integrates multiple dynamic models for accurate real-time maritime target tracking. Multi-target tracking in the maritime environment requires high accuracy due to the complex dynamic environment and various movement patterns. The existing CV-PDAF (constant velocity model) and CT-PDAF (circling model) each assume a constant movement pattern, but it is difficult to handle all the complex movements occurring in various maritime environments with these single models. To solve this problem, this study proposes an interactive multi-model-probabilistic data association filter (IMM-PDAF), and the results of this paper applied to maritime RADAR data show that the proposed IMM-PDAF has relatively lower RMSE values than CV-PDAF and CT-PDAF, and has strong positioning performance even in complex dynamic environments. Therefore, this study results highlight the potential of the proposed IMM-PDAF to improve the reliability and efficiency of maritime surveillance systems and provide a multi-target tracking solution for complex tracking environments.

Exponential Stability of th PDAF with a Modified Riccati Equation a Cluttered Environment

  • Kim, Young-Shik;Hong, Keum-Shik
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.235-243
    • /
    • 2000
  • The probabilistic data association filter(PDAF) is known to provide better tracking performance than the standard Kalman filter(KF) in a cluttered environment. In this paper, the stability of the PDAF of Fortmann et al[7], in the presence of uncertainties with regard to the origin of measurement, is investigated. The modified Riccati equation derived by approximating two random terms with their expectations is used to prove the stability of the PDAF. A new Lyapunov function based approach, which is different from the quantitative evaluation of Li and Bar-Shalom[7], is pursued. With the assumption that the system and observation noises are bounded, specific tracking error bounds are established.

  • PDF

Performance Analysis on the IMM-PDAF Method for Longitudinal and Lateral Maneuver Detection using Automotive Radar Measurements (차량용 레이더센서를 이용한 IMM-PDAF 기반 종-횡방향 운동상태 검출 및 추정기법에 대한 성능분석)

  • Yoo, Jeongjae;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.224-232
    • /
    • 2015
  • In order to develop an active safety system which avoids or mitigates collisions with preceding vehicles such as autonomous emergency braking (AEB), accurate state estimation of the nearby vehicles is very important. In this paper, an algorithm is proposed using 3 dynamic models to better estimate the state of a vehicle which has various dynamic patterns in both longitudinal and lateral direction. In particular, the proposed algorithm is based on the Interacting Multiple Model (IMM) method which employs three different dynamic models, in cruise mode, lateral maneuver mode and longitudinal maneuver mode. In addition, a Probabilistic Data Association Filter (PDAF) is utilized as a data association algorithm which can improve the reliability of the measurement under a clutter environment. In order to verify the performance of the proposed method, it is simulated in comparison with a Kalman filter method which employs a single dynamic model. Finally, the proposed method is validated using radar data obtained from the field test in the proving ground.

A Study on IMM-PDAF based Sensor Fusion Method for Compensating Lateral Errors of Detected Vehicles Using Radar and Vision Sensors (레이더와 비전 센서를 이용하여 선행차량의 횡방향 운동상태를 보정하기 위한 IMM-PDAF 기반 센서융합 기법 연구)

  • Jang, Sung-woo;Kang, Yeon-sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.633-642
    • /
    • 2016
  • It is important for advanced active safety systems and autonomous driving cars to get the accurate estimates of the nearby vehicles in order to increase their safety and performance. This paper proposes a sensor fusion method for radar and vision sensors to accurately estimate the state of the preceding vehicles. In particular, we performed a study on compensating for the lateral state error on automotive radar sensors by using a vision sensor. The proposed method is based on the Interactive Multiple Model(IMM) algorithm, which stochastically integrates the multiple Kalman Filters with the multiple models depending on lateral-compensation mode and radar-single sensor mode. In addition, a Probabilistic Data Association Filter(PDAF) is utilized as a data association method to improve the reliability of the estimates under a cluttered radar environment. A two-step correction method is used in the Kalman filter, which efficiently associates both the radar and vision measurements into single state estimates. Finally, the proposed method is validated through off-line simulations using measurements obtained from a field test in an actual road environment.

Design of Robust Fuzzy-Logic Tracker for Noise and Clutter Contaminated Trajectory based on Kalman Filter

  • Byeongil Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_1
    • /
    • pp.249-256
    • /
    • 2024
  • Traditional methods for monitoring targets rely heavily on probabilistic data association (PDA) or Kalman filtering. However, achieving optimal performance in a densely congested tracking environment proves challenging due to factors such as the complexities of measurement, mathematical simplification, and combined target detection for the tracking association problem. This article analyzes a target tracking problem through the lens of fuzzy logic theory, identifies the fuzzy rules that a fuzzy tracker employs, and designs the tracker utilizing fuzzy rules and Kalman filtering.

Multiple PDAF Algorithm for Estimation States Multiple of the Ships (다중 선박의 상태추정을 위한 Multiple PDAF 알고리즘)

  • Jaeha Choi;Jeonghong Park;Minju Kang;Hyejin Kim;Wonkeun Youn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.248-255
    • /
    • 2023
  • In order to implement the autonomous navigation function, it is essential to track an object within a certain radius of the ship's route. This paper proposes the Multiple Probabilistic Data Association Filter (MPDAF), which can track multiple ships by extending Probabilistic Data Association Filter (PDAF), an existing single object tracking algorithm, using radar data obtained from real marine environments. The proposed MPDAF algorithm was developed to address the problem of tracking multiple objects in a complex environment where there can be significant uncertainty in the number and identification of objects to be tracked. Using real-world radar data provided by the German aerospace center (DLR), it has been verified that the proposed algorithm can track a large number of objects with a small position error.

(Theoretical Analysis and Performance Prediction for PSN Filter Tracking) (PSN 픽터의 해석 및 추적성능 예측)

  • Jeong, Yeong-Heon;Kim, Dong-Hyeon;Hong, Sun-Mok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.2
    • /
    • pp.166-175
    • /
    • 2002
  • In this paper. we predict tracking performance of the probabilistic strongest neighbor filter (PSNF). The PSNF is known to be consistent and superior to the probabilistic data association filter (PDAF) in both performance and computation. The PSNF takes into account the probability that the measurement with the strongest intensity in the neighborhood of the predicted target measurement location is not target-originated. The tracking performance of the PSNF is quantified in terms of its estimation error covariance matrix. The estimation error covariance matrix is approximately evaluated by using the hybrid conditional average approach (HYCA). We performed numerical experiments to show the validity of our performance prediction.

Vehicle Cruise Control with a Multi-model Multi-target Tracking Algorithm (복합모델 다차량 추종 기법을 이용한 차량 주행 제어)

  • Moon, Il-Ki;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.696-701
    • /
    • 2004
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion, have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

  • PDF

Multi-Vehicle Tracking Adaptive Cruise Control (다차량 추종 적응순항제어)

  • Moon Il ki;Yi Kyongsu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.139-144
    • /
    • 2005
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion. have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

Tracking of ARPA Radar Signals Based on UK-PDAF and Fusion with AIS Data

  • Chan Woo Han;Sung Wook Lee;Eun Seok Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.38-48
    • /
    • 2023
  • To maintain the existing systems of ships and introduce autonomous operation technology, it is necessary to improve situational awareness through the sensor fusion of the automatic identification system (AIS) and automatic radar plotting aid (ARPA), which are installed sensors. This study proposes an algorithm for determining whether AIS and ARPA signals are sent to the same ship in real time. To minimize the number of errors caused by the time series and abnormal phenomena of heterogeneous signals, a tracking method based on the combination of the unscented Kalman filter and probabilistic data association filter is performed on ARPA radar signals, and a position prediction method is applied to AIS signals. Especially, the proposed algorithm determines whether the signal is for the same vessel by comparing motion-related components among data of heterogeneous signals to which the corresponding method is applied. Finally, a measurement test is conducted on a training ship. In this process, the proposed algorithm is validated using the AIS and ARPA signal data received by the voyage data recorder for the same ship. In addition, the proposed algorithm is verified by comparing the test results with those obtained from raw data. Therefore, it is recommended to use a sensor fusion algorithm that considers the characteristics of sensors to improve the situational awareness accuracy of existing ship systems.