• 제목/요약/키워드: Probabilistic Traveling Salesman Problem

검색결과 3건 처리시간 0.017초

이종 확률적 외판원 문제를 위한 최소 평균거리 삽입 및 집단적 지역 탐색 알고리듬 (A Minimum Expected Length Insertion Algorithm and Grouping Local Search for the Heterogeneous Probabilistic Traveling Salesman Problem)

  • 김승모;최기석
    • 산업경영시스템학회지
    • /
    • 제33권3호
    • /
    • pp.114-122
    • /
    • 2010
  • The Probabilistic Traveling Salesman Problem (PTSP) is an important topic in the study of traveling salesman problem and stochastic routing problem. The goal of PTSP is to find a priori tour visiting all customers with a minimum expected length, which simply skips customers not requiring a visit in the tour. There are many existing researches for the homogeneous version of the problem, where all customers have an identical visiting probability. Otherwise, the researches for the heterogeneous version of the problem are insufficient and most of them have focused on search base algorithms. In this paper, we propose a simple construction algorithm to solve the heterogeneous PTSP. The Minimum Expected Length Insertion (MELI) algorithm is a construction algorithm and consists of processes to decide a sequence of visiting customers by inserting the one, with the minimum expected length between two customers already in the sequence. Compared with optimal solutions, the MELI algorithm generates better solutions when the average probability is low and the customers have different visiting probabilities. We also suggest a local search method which improves the initial solution generated by the MELI algorithm.

A hybrid tabu search algorithm for Task Allocation in Mobile Crowd-sensing

  • Akter, Shathee;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권4호
    • /
    • pp.102-108
    • /
    • 2020
  • One of the key features of a mobile crowd-sensing (MCS) system is task allocation, which aims to recruit workers efficiently to carry out the tasks. Due to various constraints of the tasks (such as specific sensor requirement and a probabilistic guarantee of task completion) and workers heterogeneity, the task allocation become challenging. This assignment problem becomes more intractable because of the deadline of the tasks and a lot of possible task completion order or moving path of workers since a worker may perform multiple tasks and need to physically visit the tasks venues to complete the tasks. Therefore, in this paper, a hybrid search algorithm for task allocation called HST is proposed to address the problem, which employ a traveling salesman problem heuristic to find the task completion order. HST is developed based on the tabu search algorithm and exploits the premature convergence avoiding concepts from the genetic algorithm and simulated annealing. The experimental results verify that our proposed scheme outperforms the existing methods while satisfying given constraints.

국내택배시스템에 개미시스템 알고리즘의 적용가능성 검토 (Application of Ant System Algorithm on Parcels Delivery Service in Korea)

  • 조원경;이종호
    • 대한교통학회지
    • /
    • 제23권4호
    • /
    • pp.81-91
    • /
    • 2005
  • 외판원 문제(TSP; Traveling Salesman Problem)는 경로탐색 최적화문제로 '풀리지 않는 문제'(NP-complete; None-deterministic Polynomial-time complete)에 속하므로 경유지 수가 많아짐에 따라 급격히 계산시간이 증가한다. 때문에 적용시 정확한 최적해보다는 최적 근사해에 대한 발견적 (heuristic) 알고리즘들을 이용한다. 본 연구는 TSP에 적용되는 발견적 알고리즘으로 개미 시스템알고리즘(ASA; Ant System Algorithm)을 검토하고. 국내 택배시스템에 ASA의 적용가능성을 검토하였다. ASA는 NP-complete 문제를 위한 발견적 알고리즘으로, 1990년대 초 M. Dorigo 등에 의해 연구되어졌다. ASA는 개미들이 이동간에 페로몬이라는 일종의 화학물질을 분비할 때, 이동경로 상에 분비된 페로몬 누적에 따라 확률적 방법으로 경로를 결정하게 된다. 이러한 ASA는 NP-complete문제에서 계산시간이나 최단경로탐색에서 우수한 결과를 얻는 것으로 발표되고 있으며, 교통분야에서 차량경로탐색뿐만 아니라 네트워크 관리 및 도로선형계획 등 그 적용범위가 점차 확대되어지고 있다. 현재 국내 택배시스템에서 차량배차시 명확한 기준이 없으며 주로 담당 운전자의 경험과 판단에 의해 결정된다. 본 연구에서는 국내택배시스템에 ASA의 적용가능성을 검토하였다. 담당 운전자의 경로결정이 가로 10.0km, 세로 10.0km의 범위에서 인접이웃알고리즘(NNA: Nearest Neighbor Algorithm)을 따른다고 가정했을 때와 랜덤한 20개의 경유지를 가질 때, 그리고 경유지 수를 10개씩 증가하여 200개까지 증가할 때를 비교 분석한 결과, ASA이 NNA 보다 우수하였다. ASA을 국내택배시스템에 적용시 운송비용 절감 등의 운영개선을 기대할 수 있으며, 특히 영세한 택배업체에서 보다 저렴하고 우수한 택배시스템을 구축할 수 있을 것으로 보인다.