• Title/Summary/Keyword: Probabilistic Constraint

Search Result 54, Processing Time 0.028 seconds

Reliability-Based Design Optimization using Semi-Numerical Strategies for Structural Engineering Applications

  • Kharmanda, G.;Sharabatey, S.;Ibrahim, H.;Makhloufi, A.;Elhami, A.
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • When Deterministic Design Optimization (DDO) methods are used, deterministic optimum designs are frequently pushed to the design constraint boundary, leaving little or no room for tolerances (or uncertainties) in design, manufacture, and operating processes. In the Reliability-Based Design Optimization (RBDO) model for robust system design, the mean values of uncertain system variables are usually used as design variables, and the cost is optimized subject to prescribed probabilistic constraints as defined by a nonlinear mathematical programming problem. Therefore, a RBDO solution that reduces the structural weight in uncritical regions does not only provide an improved design but also a higher level of confidence in the design. In this work, we seek to improve the quality of RBDO processes using efficient optimization techniques with object of improving the resulting objective function and satisfying the required constraints. Our recent RBDO developments show its efficiency and applicability in this context. So we present some recent structural engineering applications demonstrate the efficiency of these developed RBDO methods.

Reliability-Based Shape Optimization Under the Stress Constraints (응력 제한조건하의 신뢰성 기반 형상 최적설계)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.469-475
    • /
    • 2010
  • The objective of this study is to integrate reliability analysis into shape optimization problem using the evolutionary structural optimization (ESO) in the application example. Reliability-based shape optimization is formulated as volume minimization problem with probabilistic stress constraint under minimization max. von Mises stress and allow stress. Young's modulus, external load and thickness are considered as uncertain variables. In order to compute reliability index, four methods, i.e., reliability index approach (RIA), performance measure approach (PMA), single-loop singlevector (SLSV) and adaptive-loop (ADL), are used. Reliability-based shape optimization design process is conducted to obtain optimal shape satisfying max. von Mises stress and reliability index constraints with the above four methods, and then each result is compared with respect to numerical stability and computing time.

Reliability Analysis of Prestress Concrete Box Girder Bridges Considering Inspection Cost (검측비용을 고려한 PC박스 거더의 신뢰성 분석)

  • Nguyen, Van Son;Jeong, Min-Chul;Kong, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.476-479
    • /
    • 2010
  • In recent years, the deterioration of infrastructures is especially considered. In prestress concrete bridges, one of the important mechanisms of deterioration is the corrosion of the post-tensioned tendon due to environmental agents. In this study, the reliability analysis is performed for a prestress concrete box girder bridge under the pitting corrosion attack with considering the inspection and failure cost. The variation of life-time performance depending on inspection methods have to be quantified. The inspection methods with different accuracy of corrosion detection are presented and applied for model of reliability analysis. The computer program for analysis reliability index of the structure as well as updating process is obtained. An existing bridge is applied for illustrating the influence of inspection cost on the behaviors of structure. Subsequently, the benefit of inspection has shown to predict the time to failure of structure.

  • PDF

Efficient Energy Management for a Solar Energy Harvesting Sensor System (태양 에너지 기반 센서 시스템을 위한 효율적인 에너지 관리 기법)

  • Noh, Dong-Kun;Yoon, Ik-Joon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.7
    • /
    • pp.478-488
    • /
    • 2009
  • Using solar power in wireless sensor networks (WSNs) requires adaptation to a highly varying energy supply and to a battery constraint. From an application's perspective, however, it is often preferred to operate at a constant quality level as opposed to changing application behavior frequently. Reconciling the varying supply with the fixed demand requires good tools for allocating energy such that average of energy supply is computed and demand is fixed accordingly. In this paper, we propose a probabilistic observation-based model for harvested solar energy. Based on this model, we develop a time-slot-based energy allocation scheme to use the periodically harvested solar energy optimally, while minimizing the variance in energy allocation. We also implement the testbed and demonstrate the efficiency of the approach by using it.

Comparative Study on Reliability-Based Topology Optimization (신뢰성 기반 위상최적화에 대한 비교 연구)

  • Cho, Kang-Hee;Hwang, Seung-Min;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.412-418
    • /
    • 2011
  • Reliability-based Topology optimization(RBTO) is to get an optimal design satisfying uncertainties of design variables. Although RBTO based on homogenization and density distribution method has been done, RBTO based on BESO has not been reported yet. This study presents a reliability-based topology optimization(RBTO) using bi-directional evolutionary structural optimization(BESO). Topology optimization is formulated as volume minimization problem with probabilistic displacement constraint. Young's modulus, external load and thickness are considered as uncertain variables. In order to compute reliability index, four methods, i.e., RIA, PMA, SLSV and ADL(adaptive-loop), are used. Reliability-based topology optimization design process is conducted to obtain optimal topology satisfying allowable displacement and target reliability index with the above four methods, and then each result is compared with respect to numerical stability and computing time. The results of this study show that the RBTO based on BESO using the four methods can effectively be applied for topology optimization. And it was confirmed that DLSV and ADL had better numerical efficiency than SLSV. ADL and SLSV had better time cost than DLSV. Consequently, ADL method showed the best time efficiency and good numerical stability.

Reliability-based Structural Design Optimization Considering Probability Model Uncertainties - Part 1: Design Method (확률모델 불확실성을 고려한 구조물의 신뢰도 기반 최적설계 - 제1편: 설계 방법)

  • Ok, Seung-Yong;Park, Wonsuk
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.148-157
    • /
    • 2012
  • Reliability-based design optimization (RBDO) problem is usually formulated as an optimization problem to minimize an objective function subjected to probabilistic constraint functions which may include deterministic design variables as well as random variables. The challenging task is that, because the probability models of the random variables are often assumed based on limited data, there exists a possibility of selecting inappropriate distribution models and/or model parameters for the random variables, which can often lead to disastrous consequences. In order to select the most appropriate distribution model from the limited observation data as well as model parameters, this study takes into account a set of possible candidate models for the random variables. The suitability of each model is then investigated by employing performance and risk functions. In this regard, this study enables structural design optimization and fitness assessment of the distribution models of the random variables at the same time. As the first paper of a two-part series, this paper describes a new design method considering probability model uncertainties. The robust performance of the proposed method is presented in Part 2. To demonstrate the effectiveness of the proposed method, an example of ten-bar truss structure is considered. The numerical results show that the proposed method can provide the optimal design variables while guaranteeing the most desirable distribution models for the random variables even in case the limited data are only available.

A Constrained Learning Method based on Ontology of Bayesian Networks for Effective Recognition of Uncertain Scenes (불확실한 장면의 효과적인 인식을 위한 베이지안 네트워크의 온톨로지 기반 제한 학습방법)

  • Hwang, Keum-Sung;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.6
    • /
    • pp.549-561
    • /
    • 2007
  • Vision-based scene understanding is to infer and interpret the context of a scene based on the evidences by analyzing the images. A probabilistic approach using Bayesian networks is actively researched, which is favorable for modeling and inferencing cause-and-effects. However, it is difficult to gather meaningful evidences sufficiently and design the model by human because the real situations are dynamic and uncertain. In this paper, we propose a learning method of Bayesian network that reduces the computational complexity and enhances the accuracy by searching an efficient BN structure in spite of insufficient evidences and training data. This method represents the domain knowledge as ontology and builds an efficient hierarchical BN structure under constraint rules that come from the ontology. To evaluate the proposed method, we have collected 90 images in nine types of circumstances. The result of experiments indicates that the proposed method shows good performance in the uncertain environment in spite of few evidences and it takes less time to learn.

Reliability Based Design Optimization for the Pressure Recovery of Supersonic Double-Wedge Inlet (이중 쐐기형 초음속 흡입구의 압력회복률에 대한 신뢰성 기반 최적설계)

  • Lee, Chang-Hyuck;Ahn, Joong-Ki;Bae, Hyo-Gil;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1067-1074
    • /
    • 2010
  • In this study, RBDO(Reliability Based Design Optimization) was performed for a supersonic double-wedge inlet. By considering uncertainty of design with given design space, the pressure recovery was transformed into the probabilistic constraint while the inlet drag was considered as a deterministic objective function. To save computational analysis cost and to search good design space, Latin-Hypercube design of experiment and the Kriging model were incorporated and then RBDO was performed. Monte-Carlo simulation was performed to verify the accuracy of AFORM(Advanced First Order Reliability Method). It was found that AFORM result agreed very well with the Monte-Carlo simulation result. The system reliability was guaranteed by considering uncertainty of the design variables. In case of considering diverse uncertainty of system design, RBDO was found to be useful.

A partially occluded object recognition technique using a probabilistic analysis in the feature space (특징 공간상에서 의 확률적 해석에 기반한 부분 인식 기법에 관한 연구)

  • 박보건;이경무;이상욱;이진학
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1946-1956
    • /
    • 2001
  • In this paper, we propose a novel 2-D partial matching algorithm based on model-based stochastic analysis of feature correspondences in a relation vector space, which is quite robust to shape variations as well as invariant to geometric transformations. We represent an object using the ARG (Attributed Relational Graph) model with features of a set of relation vectors. In addition, we statistically model the partial occlusion or noise as the distortion of the relation vector distribution in the relation vector space. Our partial matching algorithm consists of two-phases. First, a finite number of candidate sets areselected by using logical constraint embedding local and structural consistency Second, the feature loss detection is done iteratively by error detection and voting scheme thorough the error analysis of relation vector space. Experimental results on real images demonstrate that the proposed algorithm is quite robust to noise and localize target objects correctly even inseverely noisy and occluded scenes.

  • PDF

Data Envelopment Analysis with Imprecise Data Based on Robust Optimization (부정확한 데이터를 가지는 자료포락분석을 위한 로버스트 최적화 모형의 적용)

  • Lim, Sungmook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.117-131
    • /
    • 2015
  • Conventional data envelopment analysis (DEA) models require that inputs and outputs are given as crisp values. Very often, however, some of inputs and outputs are given as imprecise data where they are only known to lie within bounded intervals. While a typical approach to addressing this situation for optimization models such as DEA is to conduct sensitivity analysis, it provides only a limited ex-post measure against the data imprecision. Robust optimization provides a more effective ex-ante measure where the data imprecision is directly incorporated into the model. This study aims to apply robust optimization approach to DEA models with imprecise data. Based upon a recently developed robust optimization framework which allows a flexible adjustment of the level of conservatism, we propose two robust optimization DEA model formulations with imprecise data; multiplier and envelopment models. We demonstrate that the two models consider different risks regarding imprecise efficiency scores, and that the existing DEA models with imprecise data are special cases of the proposed models. We show that the robust optimization for the multiplier DEA model considers the risk that estimated efficiency scores exceed true values, while the one for the envelopment DEA model deals with the risk that estimated efficiency scores fall short of true values. We also show that efficiency scores stratified in terms of probabilistic bounds of constraint violations can be obtained from the proposed models. We finally illustrate the proposed approach using a sample data set and show how the results can be used for ranking DMUs.