• Title/Summary/Keyword: Privacy-Preserving Technologies

Search Result 23, Processing Time 0.018 seconds

An Access Control Method considering Semantic Context for Privacy-preserving (개인정보 보호를 위한 의미적 상황을 반영하는 접근제어 방식)

  • Kang, Woo-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • To conform to new emerging computing paradigm, various researches and challenges are being done. New information technologies make easy to access and acquire information in various ways. In other side, however, it also makes illegal access more powerful and various threat to system security. In this paper, we suggest a new extended access control method that make it possible to conform to security policies enforcement even with discrepancy between policy based constraints rules and query based constraints rules, based on their semantic information. New method is to derive security policy rules using context tree structure and to control the exceed granting of privileges through the degree of the semantic discrepancy. In addition, we illustrate prototype system architecture and make performance comparison with existing access control methods.

The Impact of Various Degrees of Composite Minimax ApproximatePolynomials on Convolutional Neural Networks over Fully HomomorphicEncryption (다양한 차수의 합성 미니맥스 근사 다항식이 완전 동형 암호 상에서의 컨볼루션 신경망 네트워크에 미치는 영향)

  • Junghyun Lee;Jong-Seon No
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.861-868
    • /
    • 2023
  • One of the key technologies in providing data analysis in the deep learning while maintaining security is fully homomorphic encryption. Due to constraints in operations on fully homomorphically encrypted data, non-arithmetic functions used in deep learning must be approximated by polynomials. Until now, the degrees of approximation polynomials with composite minimax polynomials have been uniformly set across layers, which poses challenges for effective network designs on fully homomorphic encryption. This study theoretically proves that setting different degrees of approximation polynomials constructed by composite minimax polynomial in each layer does not pose any issues in the inference on convolutional neural networks.

A Framework for Time Awareness System in the Internet of Things (사물인터넷에서 시각 정보 관리 체계)

  • Hwang, Soyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1069-1073
    • /
    • 2016
  • The Internet of Things (IoT) is the interconnection of uniquely identifiable embedded computing devices within the existing Internet infrastructure. IoT is expected to offer advanced connectivity of devices, systems, and services that goes beyond machine-to-machine communications and covers a variety of protocols, domains, and applications. Key system-level features that IoT needs to support can be summarized as device heterogeneity, scalability, ubiquitous data exchange through proximity wireless technologies, energy optimized solutions, localization and tracking capabilities, self-organization capabilities, semantic interoperability and data management, embedded security and privacy-preserving mechanisms. Time information is a critical piece of infrastructure for any distributed system. Time information and time synchronization are also fundamental building blocks in the IoT. The IoT requires new paradigms for combining time and data. This paper reviews conventional time keeping mechanisms in the Internet and presents issues to be considered for combining time and data in the IoT.