• Title/Summary/Keyword: Printing time

Search Result 563, Processing Time 0.03 seconds

Research of a new tie-dyeing tool based on 3D printing technology

  • Tu, Dan Dan;Kim, Sohyun
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.1
    • /
    • pp.161-171
    • /
    • 2022
  • Traditional tie-dyeing is widely implemented in the clothing handicraft culture in China, South Korea, and Japan. Since it was developed 2,000 years ago, it has become a popular method of fabric making in the world and is highly respected by fashion designers. Based on the existing traditional tie-dyeing methods, this study conducted specific research on the 3D printing technology of the SLS laser method and the micro tool design application method of the clamp-dyeing process. Through the experimental methods of this study, it proposes to use the "7000 Nylon" material, which is commonly used in 3D printing, to develop a new clamp-dyeing tool. This new tool can be widely used in the clamp-dyeing of fabrics, such as cotton, hemp, silk, and some chemical fibers. The applied method and principle can be consistent with the traditional clamp-dyeing method. Therefore, the innovation of tie-dyeing technology is the best protection measure for the development and inheritance of traditional fabric making. The continuation of artistic life needs originality, which is also the best response to market competition. At the same time, this new design of the clamp-dyeing tool has the characteristics of novelty, innovation, and rich changes, which aligns with the new fashion demands of current fabric design.

The Perception of 3D Printing Technology for Adoption in Domestic Architecture Industry (국내 건축분야 3D 프린팅 기술의 실무 도입에 관한 인식)

  • Shin, Jaeyoung;Won, Jisun;Ju, Ki-Beom;Seo, Myoung-Bae;Park, Hyung-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.731-739
    • /
    • 2017
  • As Additive Manufacturing (AM), so-called 3D printing technology, has become visualized, its potential for Mass-Customization, production costs and time savings has extended the scope of utilization to the architecture domain. Several cases that produced facilities, building elements and components using 3D printing technology have been announced mainly on the outside. There is also the development of foundation technologies including 3D printing-specific materials and equipment in Korea. As 3D printing technology in the architecture domain is currently in the early stages of adoption, realistic and systematic strategies are needed to advance it to the commercialization stages, considering the current circumstances of the industry. With this background, this study surveyed experts to investigate the status of the perception of 3D printing technology for adoption in domestic architecture industry. 3D printing technology is expected to be commercialized in areas of irregular-shape buildings and interior markets rather than general construction area. 3D printed products expected to be commercialized are limited to the level of building elements and the aesthetic factor is regarded as the most competitive factor. To enhance the possibility of the commercialization of 3D printed products, the 3D printing-specific construction method, related policies and systems are required along with the performance and stability of the materials and equipment.

The Analysis on Technology Acceptance Model for the 3D Printing Industry with the Social Economic Environment Converged Unified Theory Of Acceptance and Use of Technology Model (3D 프린팅 산업에 대한 사회경제환경 융합형 통합기술수용모델을 통한 기업의 3D기술수용의도 분석)

  • Kim, Young-soo;Hong, Ah-reum
    • Journal of Korea Technology Innovation Society
    • /
    • v.22 no.1
    • /
    • pp.119-157
    • /
    • 2019
  • It is important for the people in the 3D printing industry to determine which factors influence the decision-making that determine the adoption of 3D printers and the role of the factors. Through this, we intend to find ways to contribute to the development of 3D printing industry in Korea by increasing utilization of 3D printer used in domestic companies and increasing investment in related industries. 3D printers are making rapid progress according to the development of technology, the public interest, and the activation of investment. Foreign countries have made remarkable progress in equipment, materials, software, and industrial applications, but they are lower than expected in Korea. It is necessary to introduce a smooth 3D printer in order to revitalize the 3D printer industry and enlarge the base, but it is insufficient for actual introduction and field application. The independent variables that represent economic, technological, and environmental characteristics were selected through a literature survey, and a model for accepting integrated technology for convergence of societies in the 3D printing industry was proposed. This study confirms that economic factors such as output unit price, government support, and environmental factors such as 3D contents should be developed organically for the introduction of 3D printing technology and equipment. This require systematic and effective support from the government, and it is necessary to improve the economic support, related laws, and systems that can be directly experienced by the user as a user. As the domestic 3D printing industry develops with economic, technological and time investment, 3D printing industry should be the key engine of the 4th industrial revolution.

The effect of 4,4'-bis(N,N-diethylamino)benzophenone on the degree of conversion in liquid photopolymer for dental 3D printing

  • Lee, Du-Hyeong;Mai, Hang Nga;Yang, Jin-Chul;Kwon, Tae-Yub
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.5
    • /
    • pp.386-391
    • /
    • 2015
  • PURPOSE. The purpose of this preliminary study was to investigate the effects of adding 4,4'-bis(N,N-diethylamino) benzophenone (DEABP) as a co-initiator to a binary photoinitiating system (camphorquinone-amine) to analyze on the degree of conversion (DC) of a light-cured resin for dental 3D printing. MATERIALS AND METHODS. Cylindrical specimens (N=60, n=30 per group, ${\phi}5mm{\times}1mm$) were fabricated using bisphenol A glycerolate dimethacrylate (BisGMA) both with and without DEABP. The freshly mixed resins were exposed to light in a custom-made closed chamber with nine light-emitting diode lamps (wavelength: 405 nm; power: $840mW/cm^2$) for polymerization at each incidence of light-irradiation at 10, 30, 60, 180, and 300 seconds, while five specimens at a time were evaluated at each given irradiation point. Fourier-transform infrared (FTIR) spectroscopy was used to measure the DC values of the resins. Two-way analysis of variance and the Duncan post hoc test were used to analyze statistically significant differences between the groups and given times (${\alpha}$=.05). RESULTS. In the DEABP-containing resin, the DC values were significantly higher at all points in time (P<.001), and also the initial polymerization velocity was faster than in the DEABP-free resin. CONCLUSION. The addition of DEABP significantly enhanced the DC values and, thus, could potentially become an efficient photoinitiator when combined with a camphorquinone-amine system and may be utilized as a more advanced photopolymerization system for dental 3D printing.

The Effects of Two-step Fixation and Urea on the Alkali Discharge Printing of Cotton Fabrics Dyed with C. I. Reactive Black 5 (C. I. Reactive Black 5로 염색된 면직물의 알칼리발염에 있어 2단계 고착조건 및 요소의 영향)

  • 정화진;박건용
    • Textile Coloration and Finishing
    • /
    • v.11 no.1
    • /
    • pp.16-24
    • /
    • 1999
  • The effects of two-step fixation of steaming and baking on the dischargeability of cotton fabrics dyed with C.I. Reactive Black 5(Bl-5) were investigated when the concentrations of $K_2CO_3$ and benzaldehyde sodium bisulfite(BASB) were increased over 120/kg. Remarkably increased dischargeability resulted from baking for 3 min or more at 160t after steaming for 8 min or more at $102^\circ{C}$, but 120g/kg or more amounts of $K_2CO_3$ and BASB(50%) had little influence on dischargeability. Therefore the discharge mechanism can be suggested that covalent bonds between cellulose and Bl-5 undergo $S_N2$ attack by hydroxide ion formed by the reaction of $K_2CO_3$ and water in steaming at $102^\circ{C}$ first and then, through transition states they are cleavaged in baking at 160t to yield hydrolyzed Bl-S and compounds of BASB and Bl-5 isolated from fiber, which are undyeable and removed by washing. The effect of urea, one of the hydrotrope agents, on discharge printing was also studied. The result which dischargeability was greatly improved by increasing the steaming time from 8 min to 15 min at $102^\circ{C}$ or by increasing the amount of urea obviously shows that water in steaming and urea in print paste play an important role in discharge printing. And as an increase of the baking time from 5 min to 7 min at $160^\circ{C}$ makes it possible to improve dischargeability, it is once more confirmed that high temperature of about 160t is exactly required to discharge the dyed Bl-5. The colored discharge printing demands a more amount of urea because urea contributes to the putting color fixation as well as the discharge reaction.

  • PDF

Investigation to Metal 3D Printing Additive Manufacturing (AM) Process Simulation Technology (II) (금속 3D 프린팅 적층제조(AM) 공정 시뮬레이션 기술에 관한 고찰(II))

  • Kim, Yong Seok;Choi, Seong Woong;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.51-58
    • /
    • 2019
  • The objective of this study was to investigate a simulation technology for the AM field based on ANSYS Inc.. The introduction of metal 3D printing AM process, and the examining of the present status of AM process simulation software, and the AM process simulation processor were done in the previous study (part 1). This present study (part 2) examined the use of the AM process simulation processor, presented in Part 1, through direct execution of Topology Optimization, Ansys Workbench, Additive Print and Additive Science. Topology Optimization can optimize additive geometry to reduce mass while maintaining strength for AM products. This can reduce the amount of material required for additive and significantly reduce additive build time. Ansys Workbench and Additive Print simulate the build process in the AM process and optimize various process variables (printing parameters and supporter composition), which will enable the AM to predict the problems that may occur during the build process, and can also be used to predict and correct deformations in geometry. Additive Science can simulate the material to find the material characteristic before the AM process simulation or build-up. This can be done by combining specimen preparation, measurement, and simulation for material measurements to find the exact material characteristics. This study will enable the understanding of the general process of AM simulation more easily. Furthermore, it will be of great help to a reader who wants to experience and appreciate AM simulation for the first time.

Effect of Photo Initiator Content and Light Exposure Time on the Fabrication of Al2O3 Ceramic by DLP-3D Printing Method (광개시제 함량과 노광 시간이 DLP기반 알루미나 3D 프린팅 공정에 미치는 영향)

  • Kim, Kyung Min;Jeong, Hyeondeok;Han, Yoon Soo;Baek, Su-Hyun;Kim, Young Do;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.327-333
    • /
    • 2019
  • In this study, a process is developed for 3D printing with alumina ($Al_2O_3$). First, a photocurable slurry made from nanoparticle $Al_2O_3$ powder is mixed with hexanediol diacrylate binder and phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide photoinitiator. The optimum solid content of $Al_2O_3$ is determined by measuring the rheological properties of the slurry. Then, green bodies of $Al_2O_3$ with different photoinitiator contents and UV exposure times are fabricated with a digital light processing (DLP) 3D printer. The dimensional accuracy of the printed $Al_2O_3$ green bodies and the number of defects are evaluated by carefully measuring the samples and imaging them with a scanning electron microscope. The optimum photoinitiator content and exposure time are 0.5 wt% and 0.8 s, respectively. These results show that $Al_2O_3$ products of various sizes and shapes can be fabricated by DLP 3D printing.

Analysis of Changes in Temperature and Humidity by Material Combination Using 3D Printing (3D 프린팅을 활용한 재료조합에 따른 온습도 변화 분석)

  • Lee, Heeran;Kim, Soyoung;Lee, Yejin;Lee, Okkyung
    • Fashion & Textile Research Journal
    • /
    • v.24 no.1
    • /
    • pp.127-137
    • /
    • 2022
  • Recently, various clothing items are being developed using 3D printing technology, but comfort has become an issue while wearing them for a long time. Therefore, this study researched on how the temperature and humidity of the devices developed by 3D printing change depending on the material combination. Five types of material combinations (EVA foam, TPU density 10%, TPU density 30%, EVA foam+TPU density 10%, and EVA foam+TPU density 30%) were selected as variables, and the experiment was conducted for two different cases with and without a cover. All the ten types of samples were placed on the hot plate set at 36℃, and the surface temperature and humidity were measured at three different points for 10 minutes. As a result, the case with only TPU showed the greatest temperature change while the case with 100% EVA foam showed the least temperature change. The humidity of the surface layer gradually decreased with time for 100% EVA foam. For the case with TPU materials, the moisture was transferred to the surface layer at first, thereby increasing the humidity but then dropped significantly. Meanwhile, the cases with the cover on showed similar tendencies of change in both temperature and humidity where the overall temperature and humidity delivery were slow.

The Effect of Preoperative Three Dimensional Modeling and Simulation on Outcome of Intracranial Aneursym Surgery

  • Erkin Ozgiray;Bugra Husemoglu;Celal Cinar;Elif Bolat;Nevhis Akinturk;Huseyin Biceroglu;Ceren Kizmazoglu
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.2
    • /
    • pp.166-176
    • /
    • 2024
  • Objective : Three-dimensional (3D) printing in vascular surgery is trending and is useful for the visualisation of intracranial aneurysms for both surgeons and trainees. The 3D models give the surgeon time to practice before hand and plan the surgery accordingly. The aim of this study was to examine the effect of preoperative planning with 3D printing models of aneurysms in terms of surgical time and patient outcomes. Methods : Forty patients were prospectively enrolled in this study and divided into two groups : groups I and II. In group I, only the angiograms were studied before surgery. Solid 3D modelling was performed only for group II before the operation and was studied accordingly. All surgeries were performed by the same senior vascular neurosurgeon. Demographic data, surgical data, both preoperative and postoperative modified Rankin scale (mRS) scores, and Glasgow outcome scores (GOS) were evaluated. Results : The average time of surgery was shorter in group II, and the difference was statistically significant between the two groups (p<0.001). However, no major differences were found for the GOS, hospitalisation time, or mRS. Conclusion : This study is the first prospective study of the utility of 3D aneurysm models. We show that 3D models are useful in surgery preparation. In the near future, these models will be used widely to educate trainees and pre-plan surgical options for senior surgeons.

Development of Method for Manufacturing Freeform EPS Forms Using Sloped-LOM Type 3D Printer (Sloped-LOM 방식 3D 프린터를 이용한 비정형 EPS 거푸집 제작 공법 개발)

  • Ahn, Heejae;Lee, Dongyoun;Ji, Woojong;Lee, Woojae;Cho, Hunhee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.171-181
    • /
    • 2020
  • Recently, free-formed construction technology is becoming a new measure of representing technological superiority and sociocultural ingenuity. However, the CNC processing technology utilizing the existing wood and iron form has limitations in terms of the manufacturing time and material cost. Therefore, in this study, the method and process of manufacturing free-formed EPS form using S-LOM-based 3D printing technology were suggested. Furthermore, through the mock-up test, a comparative analysis of the manufacturing time and precision with CNC milling technology was conducted. The results show that S-LOM-based 3D printing technology has reduced manufacturing time about 57.4% compared to CNC milling technology during the free-formed EPS form manufacturing process. In addition, compared to the design drawings, the maximum error value was 20.5mm, proving the applicability of S-LOM-based 3D printing technology. The results of this study are expected to contribute to the improvement of S-LOM method and the activation of S-LOM method by verifying the applicability of S-LOM-based 3D printing technology.