• Title/Summary/Keyword: Printing pressure

Search Result 209, Processing Time 0.024 seconds

Application of Sea Algae Fiber for the Improvement of Compressibility and Physical Properties of Letter Press Printing Paper (활판 인쇄용지의 압축성 및 물리적특성 향상을 위한 해조류 섬유의 적용)

  • Kim, Byong-Hyun;Seo, Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • For the improvement of letterpress printing paper quality, special fibers obtained from the sea were used by mixing with wood fibers. The sizes of the special fibers, which were from red algae in the sea, were 0.5-1 mm in length, and 3-7 ${\mu}m$ in width, respectively, and the fibers were supplied by Pegasus Research Inc. for the study. From the study, it was found that 10% addition of algae fibers greatly improved paper surface strength and internal bonding strength. The compressibility was estimated by utilizing 'Print-surf method' at high clamping pressure and with hard backing. Again, 10% addition of algae fibers greatly improved the compressibility of the paper. These results were expected that algae and wood fibers were distributed evenly through the sheet, and integrated one another to leave no empty space inside the paper.

An Analysis of Screen Printing using Solder Paste (솔더 페이스트를 이용한 스크린 프린팅 공정 해석)

  • Seo, Won-Sang;Min, Byung-Wook;Kim, Jong-Ho;Lee, Nak-Kyu;Kim, Jong-Bong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.47-53
    • /
    • 2010
  • In this study, analyses on the stencil printing using solder paste were carried out. The key design parameters in the stencil printing process are printing conditions, stencil design, and solder paste properties. Among these parameters, the effects of physical properties of solder paste such as viscosity, surface tension, and contact angle on the stencil printing process were investigated. The analyses were performed for simple geometry and boundary conditions. In the analysis, solder paste was pushed into a stencil hole by pressure instead of printer pad. Considering the geometry and computational efficiency, axisymmetric analyses were adopted. A commercial software (COMSOL), which is well known in the area of micro-fluids analysis, was used. From the results, it was shown that viscosity of solder paste had an effect on the filling speed, while surface tension and contact angle had an effect on the filling shape.

Fabrication Process of a Nano-precision Polydimethylsiloxane Replica using Vacuum Pressure-Difference Technique (진공 압력차이법에 의한 나노 정밀도를 가지는 폴리디메틸실록산 형상복제)

  • 박상후;임태우;양동열;공홍진;이광섭
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.305-313
    • /
    • 2004
  • A vacuum pressure-difference technique for making a nano-precision replica is investigated for various applications. Master patterns for replication were fabricated using a nano-replication printing (nRP) process. In the nRP process, any picture and pattern can be replicated from a bitmap figure file in the range of several micrometers with resolution of 200nm. A liquid-state monomer is solidified by two-photon absorption (TPA) induced by a femto-second laser according to a voxel matrix scanning. After polymerization, the remaining monomers were removed simply by using ethanol droplets. And then, a gold metal layer of about 30nm thickness was deposited on the fabricated master patterns prior to polydimethylsiloxane molding for preventing bonding between the master and the polydimethylsiloxane mold. A few gold particles attached on the polydimethylsiloxane stamp during detaching process were removed by a gold selecting etchant. After fabricating the polydimethylsiloxane mold, a nano-precision polydimethylsiloxane replica was reproduced. More precise replica was produced by the vacuum pressure-difference technique that is proposed in this paper. Through this study, direct patterning on a glass plate, replicating a polydimethylsiloxane mold, and reproducing polydimethylsiloxane replica are demonstrated with a vacuum pressure-difference technique for various micro/nano-applications.

New Approach to Pressure Control of a Impression Cylinder for Roll Coater (인쇄성능 향상을 위한 롤코터용 임프레션 실린더의 압력 제어)

  • Yun, S.N.;Ham, Y.B.;Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.59-64
    • /
    • 2009
  • This study presents a new approach to pressure control of a impression cylinder for roll coater which is a kind of face pressure control between blanket roll and impression roll. Roll-to-Roll method for printing is a very useful tool for mass production such as RFID elements, smart sensors and solar cell devices. In this study, a decupling control strategy of the roll coater which is a combination of a cylinder system, a dry system and two pressure regulators with two pneumatic cylinders was discussed. Also, the characteristics of component such as a pressure regulator having a pressure reducing function and the movement of a blanket roll and a impression cylinder were analyzed using the Matlab software. From this results, the techniques of a shock and a vibration reduction were suggested.

  • PDF

Flip-Chip Package of Silicon Pressure Sensor Using Lead-Free Solder (무연솔더를 이용한 실리콘 압력센서의 플립칩 패키지)

  • Cho, Chan-Seob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.4
    • /
    • pp.215-219
    • /
    • 2009
  • A packaging technology based on flip-chip bonding and Pb-free solder for silicon pressure sensors on printed circuit board (PCB) is presented. First, the bump formation process was conducted by Pb-free solder. Ag-Sn-Cu solder and the pressed-screen printing method were used to fabricate solder bumps. The fabricated solder bumps had $189-223{\mu}m$ width, $120-160{\mu}m$ thickness, and 5.4-6.9 standard deviation. Also, shear tests was conducted to measure the bump shear strength by a Dage 2400 PC shear tester; the average shear strength was 74 g at 0.125 mm/s of test speed and $5{\mu}m$ shear height. Then, silicon pressure sensor packaging was implemented using the Pb-free solder and bump formation process. The characteristics of the pressure sensor were analogous to the results obtained when the pressure sensor dice are assembled and packaged using the standard wire-bonding technique.

  • PDF

Thick-Film Strain-gage Ceramic-Pressure Sensor (세라믹 다이어프램을 이용한 후막 스트레인 게이지 압력센서)

  • 이성재;박하용;민남기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.987-993
    • /
    • 2001
  • In this paper, we presents the construction details and output characteristics of a thick film piezoresistive strain gage. The thick film was printed on the ceramic diaphragm back side by screen printing and cured at 850$^{\circ}C$. The strain distribution and deflection on ceramic diaphragm were performed with finite-element method(FEM tool ANSYS-5.3). Various thick film strain gage characteristics were analysed, including nonlinearity, hysteresis, stability and sensitivity of thick film strain gages.

  • PDF

A Study on Scarf Design Using Eco Printing -Focused on the Researcher's Works- (에코 프린팅(Eco Printing)을 활용한 스카프디자인 연구 -연구자의 작품을 중심으로-)

  • Jeong, In Suk;Kang, Ki Yong
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.221-228
    • /
    • 2017
  • This paper aimed to find out the eco-friendly approach enabling to directly print patterns and dye colors on fabrics using leaves of plants. In the research process, I found out the 'eco-printing' which could effectively express unique colors and patterns of plants. While eco-printing can design the patterns and colors of plants in nature using the leaves of plant(Eucalyptus), it is difficult to implement because it is not systematically and academically investigated including the dictionary definition in Korea until now. Thus, I tried to define the eco-printing and natural dyeing using leaves or flowers of plants enabling to get natural patterns and colors and do the experimental research and production using the leaves of Eucalyptus. The leaves of Eucalyptus were arranged on a wool scarf and a silk scarf, tied and applied pressure to them and made pigments penetrate into fabrics by heating or steaming them. This approach is to directly print the patterns using the shapes of plants on fabrics unlike the existing approaches dyeing by extracting dyeing solution from natural materials. Furthermore, the change of colors was attempted by using the color fixers. In accordance with the results of this experimental research, the scarf design differentiated from the existing products could be acquired. It was identified that eco-printing could induce the color variables depending on the conditions of each material and environment. For improving the color variables, various kinds of fabrics and divers kinds of materials which can be easily acquired in a daily life will be investigated and compared. Furthermore, it is expected that the experimental research and production techniques on eco-printing be utilized when starting natural dyeing and the scope of natural dyeing be more expanded.

Electrical Conductivity and Defect Structure in $SrTiO_3$Thick Film ($SrTiO_3$ 후막의 전기전도도 및 결함구조)

  • 김영호;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.841-850
    • /
    • 1990
  • The electrical conductivity of SrTiO3 thick films, which has been prepared by screen printing and sintering on polycrystalline Al2O3 substrates, was determined as a function of oxygen partial pressure and temperature. The data showed that electrical conductivity was proportional to the -1/4th power of the oxygen partial pressure for the oxygen partial pressure range from 10-4-10-8 to 10-20 atm and proportional to Po2+1/4 for the oxygen partial pressure range from 10-6-10-4 to 1atm. And then n-p transition region of electrical conductivity moved to lower oxygen partial pressure region as the sintering temperature of thick film specimens increased under about 140$0^{\circ}C$. These data were consistent with the presence of small amounts of acceptor impurities in SrTiO3 thick film which have been diffused from Al2O3 substrate in the range of solid solubility limit.

  • PDF

Development of Atmospheric Pressure Plasma Equipment and It's Application to Flip Chip BGA Manufacturing Process (대기압 플라즈마 설비 개발 및 Flip Chip BGA 제조공정 적용)

  • Lee, Ki-Seok;Ryu, Sun-Joong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.15-21
    • /
    • 2009
  • Atmospheric pressure plasma equipment was successfully applied to the flip chip BGA manufacturing process to improve the uniformity of flux printing process. The problem was characterized as shrinkage of the printed flux layer due to insufficient surface energy of the flip chip BGA substrate. To improve the hydrophilic characteristics of the flip chip BGA substrate, remote DBD type atmospheric pressure plasma equipment was developed and adapted to the flux print process. The equipment enhanced the surface energy of the substrate to reasonable level and made the flux be distributed over the entire flip chip BGA substrate uniformly. This research was the first adaptation of the atmospheric pressure plasma equipment to the flip chip BGA manufacturing process and a lot of possible applications are supposed to be extended to other PCB manufacturing processes such as organic cleaning, etc.

  • PDF

Development of a Lock-In Amplifier Array for Capacitive Type Pressure Mapping Sensor (정전용량 형 압력맵핑센서를 위한 록인 증폭기 어레이 개발)

  • Kim, Cheong-Worl;Lee, Young-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.63-67
    • /
    • 2017
  • In this study, We developed a simple and low cost capacitive pressure mapping sensor and microcontroller-base lock-in amplifier array. We developed capacitive type pressure mapping sensor by forming the electrode and adhesives on plastic films using only the printing process, and the finishing the process by bonding the two films. Lock-in amplifier array was based on a general purpose microcontroller and had only a charge amplifier as analog circuits. In this study, a $10{\times}10$ capacitive type pressure mapping sensor and lock-in amplifier array was fabricated and its characteristics were analyzed.

  • PDF