• Title/Summary/Keyword: Printing plate

Search Result 119, Processing Time 0.031 seconds

A Development on the Non-Photomask Plate Making Technology for Screen Printing (II) (포토마스크가 필요 없는 스크린 제판 기술 개발(II))

  • Park, Kyoung-Jin;Kang, Hyo-Jin;Kim, Sung-Bin;Nam, Su-Yong;Ahn, Byung-Hyun
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.26 no.2
    • /
    • pp.45-54
    • /
    • 2008
  • We have manufactured a photoresist which has excellent dispersity and good applying property due to 330 cps of viscosity for environment-friendly and economical maskless screen plate making. And the photoresist applied on the screen stretched was exposed with mask by UV-LED light source so we could manufacture the photoresist which proper for the UV light source. And it was developed by air spray with $1.7\;kgf/cm^2$ of injection pressure. Because of the excellence of power and resolution of the UV-LED light sourse, the pencil hardness and solvent resistance of curing photoresist film were excellent as those of conventional photoresist film. Moreover the $100{\mu}m$-width stripe image which has sharp edges was formed. So we confirmed a possibility of dry development process by air spray method.

  • PDF

Micro to Nano-scale Electrohydrodynamic Nano-Inkjet Printing for Printed Electronics: Fundamentals and Solar Cell Applications

  • Byeon, Do-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.3.2-3.2
    • /
    • 2011
  • In recent years, inkjet printing technology has received significant attention as a micro/nanofabrication technique for flexible printing of electronic circuits and solar cells, as well for biomaterial patterning. It eliminates the need for physical masks, causes fewer environment problems, lowers fabrication costs, and offers good layer-to-layer registration. To fulfill the requirements for use in the above applications, however, the inkjet system must meet certain criteria such as high frequency jetting, uniform droplet size, high density nozzle array, etc. Existing inkjet devices are either based on thermal bubbles or piezoelectric pumping; they have several drawbacks for flexible printing. For instance, thermal bubble jetting has limitations in terms of size and density of the nozzle array as well as the ejection frequency. Piezoelectric based devices suffer from poor pumping energy in addition to inadequate ejection frequency. Recently, an electrohydrodynamic (EHD) printing technique has been suggested and proposed as an alternative to thermal bubble or piezoelectric devices. In EHD jetting, a liquid (ink) is pumped through a nozzle and a strong electric field is applied between the nozzle and an extractor plate, which induce charges at the surfaces of the liquid meniscus. This electric field creates an electric stress that stretches the meniscus in the direction of the electric field. Once the electric field force is larger than the surface tension force, a liquid droplet is formed. An EHD inkjet head can produce droplets smaller than the size of the nozzle that produce them. Furthermore, the EHD nano-inkjet can eject high viscosity liquid through the nozzle forming tiny structures. These unique features distinguish EHD printing from conventional methods for sub-micron resolution printing. In this presentation, I will introduce the recent research results regarding the EHD nano-inkjet and the printing system, which has been applied to solar cell or thin film transistor applications.

  • PDF

Effect of Electrode Diameter on Pine Ceramic Pattern Formed by Using Pin-To-Pin Type Electro-Hydrodynamic Printing (핀-핀 형 전극의 전기-수력학 프린팅에서 전극 직경이 미세 세라믹 패턴 형성에 미치는 영향)

  • Lee Dae-Young;Yu Jae-Hun;Yu Tae-U;Hwang Jungho;Kim Yong-Jun
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.108-114
    • /
    • 2005
  • The generation of fine relics of suspensions is a significant interest as it holds the key to the fabrication of electronic devices. These processes offer opportunities for miniaturization of multilayer circuits, for production of functionally graded materials, ordered composites and far small complex-shaped components. Some novel printing methods of depositing ceramic and metal droplets were suggested in recent years. In an electro-hydrodynamic printing, the metallic capillary nozzle can be raised to several kilovolts with respect to the infinite ground plate or pin-type electrode positioned a few millimeters from the nozzle tip. Depending on the electrical and physical properties of the liquid, for a given geometry, it Is possible to generate droplets in any one of three modes, dripping, cone-jet and multi-jet. In this experiment, an alumina suspension flowing through a nozzle was subjected to electro-hydrodynamic printing using pin-type electrodes in the cone-jet mode at different applied voltages. The pin-type electrodes of 1, 100, 1000${\mu}m$ in diameter were used to form fine ceramic patterns onto the substrates. Various feature sizes with applied voltages and electrode diameters were measured. The feature sizes increased with the electrode diameter and applied voltages. The feature size was as fine as $30 {\mu}m$.

  • PDF

3D-printing Bone Model for Surgical Planning of Corrective Osteotomy for Treatment of Medial Patellar Luxation in a Dog

  • Jeong, Bumsoo;Jung, Jaemin;Park, Jiyoung;Jeong, Seong Mok;Lee, Haebeom
    • Journal of Veterinary Clinics
    • /
    • v.33 no.6
    • /
    • pp.385-388
    • /
    • 2016
  • A 2-year-old, castrated male Chihuahua dog was referred for revision surgery for reluxation of the patella following surgery for medial patellar luxation (MPL) of the left stifle joint. On general inspection, the patient showed bilateral hindlimb weight-bearing lameness. On physical examination, bilateral non-reducible MPL was detected through palpation. Radiographs revealed bone deformities of both hindlimbs. Computed tomography (CT) was applied for a three-dimensional (3D) printing bone model to establish an accurate surgical plan. The bone plate was pre-contoured over the 3D-printing bone model after execution of corrective osteotomy and sterilized prior to use in surgery. Corrective osteotomy was performed through a staged, bilateral procedure. The patient showed improvement of limb function following surgery without reluxation of the patella. The use of 3D-printing bone model for accurate surgical planning of corrective osteotomy appears to be effective in increasing the accuracy of surgery. That may lead to successful surgical outcomes.

Manufacturing a Functional Bolus Using a 3D printer in Radiation Therapy (방사선치료에서 3D 프린터를 이용한 기능적 조직보상체의 제작)

  • Lee, Yi-Seong;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.43 no.1
    • /
    • pp.9-14
    • /
    • 2020
  • Commercial plate bolus is generally used for treatment of surface tumor and required surface dose. We fabricated 3D-printed bolus by using 3D printing technology and usability of 3D-printed bolus was evaluated. RT-structure of contoured plate bolus in the TPS was exported to DICOM files and converted to STL file by using converting program. The 3D-printed bolus was manufactured with rubber-like translucent materials using a 3D printer. The dose distribution calculated in the TPS and compared the characteristics of the plate bolus and the 3D printed bolus. The absolute dose was measured inserting an ion chamber to the depth of 5 cm and 10 cm from the surface of the blue water phantom. HU and ED were measured to compare the material characteristics. 100% dose was distributed at Dmax of 1.5 cm below the surface when was applied without bolus. When the plate bolus and 3D-plate bolus were applied, dose distributed at 0.9 cm and 0.8 cm below the surface of the bolus. After the comparative analysis of the radiation dose at the reference depth, differences in radiation dose of 0.1 ~ 0.3% were found, but there was no difference dose. The usability of the 3D-printed bolus was thus confirmed and it is considered that the 3D-printed bolus can be applied in radiation therapy.

Wear Problem Improvement Manufacture Technology of Ignitor Tip Component Using 3D Printing Technology (발전소 점화자 팁 부품의 마모 문제 해결을 위한 3D 프린팅 기술을 이용한 부품 제조기술개발)

  • Lee, Hye-Jin;Yeon, Simo;Son, Yong;Lee, Nak-Kyu
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.35-40
    • /
    • 2016
  • Ignitor tip is a component of burner to start the burning process in power plant. This is used to ignite the coal to a constant operating state by fuel mixed with air and kerosene. This component is composed of three components so that air and kerosene are mixed in the proper ratio and injected uniformly. Because the parts with the designed shape are manufactured in the machining process, they have to be made of three parts. These parts are designed to have various functions in each part. The mixing part mixes the supplied air and kerosene through the six holes and sends it to the injecting part at the proper ratio. The inject part injects mixed fuel, which is led to have a constant rotational direction in the connecting part, to the burner. And the connecting plate that the mixed fuel could rotate and spray is assembled so that the flame can be injected uniformly. But this part causes problems that are worn by vibration and rotation because it is mechanically assembled between the mixing part and the inject part. In this study, 3D printing method is used to integrate a connecting plate and an inject part to solve this wear problem. The 3D printing method could make this integrated part because the process is carried out layer by layer using a metal powder material. The part manufactured by 3D printing process should perform the post process such as support removal and surface treatment. However, while performing the 3D printing process, the material properties of the metal powders are changed by the laser sintering process. This change in material properties makes the post process difficult. In consideration of these variables, we have studied the optimization of manufacturing process using 3D printing method.

A Study on the Maskless Plate Making Technology for Screen Printing(I) (Maskless용 스크린 제판 기술 연구(I))

  • Lee, Mi-Young;Park, Kyoung-Jin;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.26 no.1
    • /
    • pp.73-85
    • /
    • 2008
  • We have manufactured a photoresist which has excellent dispersity and good applying property due to 330cps of viscosity for environment-friendly and economical maskless screen plate making. And the photoresist applied on the screen stretched was exposed without mask by beam projector with CRT light source. Then it was developed by air spray with $1.7kgf/cm^2$ of injection pressure. The pencil hardness and solvent resistance of curing photoresist film were worse than those of conventional photoresist film and the maximum resolution of line image formed by maskless screen plate making was 0.5 mm since the exposure system for maskless plate making has weak light intensity and the diffusion of light. But we could obtain maskless screen plate which has sharp edges of line image and confirm a possibility of dry development process by air spray method.

  • PDF

Piezo-driven inkjet printhead monitoring system (압전 잉크젯 헤드 모니터링 시스템)

  • Lee, Byeung-Leul;Kim, Sang-Il
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.124-129
    • /
    • 2010
  • For the industrial printing applications, the stability of the piezo-driven inkjet printhead is a major requirement. In this paper, we focused on the failure modes of the inkjet printhead and realized a method to detect and repair them at high speed. The printhead monitoring is performed by detecting the residual vibration of the actuating plate using the self- sensing capability of the piezoelectric material. To measure the channel acoustics and to identify the malfunctioning nozzle, we devised the bridge sensing circuitry and failure detection algorithm. The residual vibration signals can be affected by the boundary conditions of the channel acoustics, so it is possible to identify the failure causes by analyzing the monitoring signals. Therefore it is also possible to apply a proper restoring process to the defective printhead. The experimental results show that this method is effective in improving the reliability of the industrial printing.

Simulation of Ink Transfer in the Printing Nip (인쇄롤러 틈새에서 잉크 전이의 시뮬레이션에 관한 연구)

  • Lee, Mi-Jung;Youn, Jong-Tae
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.23 no.2
    • /
    • pp.103-115
    • /
    • 2005
  • In off-set printing or coating process, it transfers ink on plate by rolling system. As Ink flows between rolls have an influence on printability of the final products, it needs to be studied scientifically and then control its values. Ink flows between rolls are processed under the effect of diversity factors such as rhelogical properties, printing speed, temperature, humidity etc. Therefore, this study try to approach the real ink transfer mechanism to be concerned about all sorts of variables.

  • PDF

Development of a Nano Replication Printing(nRP) Process using a Voxel Matrix Scanning Scheme (복셀 메트릭스 스캐닝법에 의한 나노 복화(複畵)공정 재발)

  • 박상후;임태우;양동열;이신욱;공홍진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.210-217
    • /
    • 2004
  • In this study, a new process, named as nano replication printing(nRP) process, is developed for printing any figure in the range of several micrometers by using voxel matrix scanning scheme. In this newly developed process, a femto-second laser is scanned on a photosensitive monomer resin in order to induce polymerization of the liquid resin according to a voxel matrix which is transformed from bitmap format file. After the polymerization, a droplet of ethanol is dropt to remove the unnecessary remaining liquid resin and then the polymerized figures with nano-scaled precision are only remaining on the glass plate. By the nRP process, any figure file of bitmap format could be reproduced as nano-scaled precision replication in the range of several micrometers. Also, nano/micro-scaled patterns for an extremely wide range of applications would become a technologically feasible reality. Some of figures with nano-scaled precision were printed in scaled replication as examples to prove the usefulness of this study.