• Title/Summary/Keyword: Printing plate

Search Result 120, Processing Time 0.026 seconds

MEASUREMENT OF SURFACE TENSION OF MOLTEN METALS IN ARC WELDING

  • Shinobu Satonaka;Shigeo Akiyoshi;Inoue, Rin-taro;Kim, Kwang-Ryul
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.757-762
    • /
    • 2002
  • Many reports have been shown that the buoyancy, electromagnetic force, surface tension, and gas shear stress are the driving forces of weld pool circulation in arc welding. Among them, the surface tension of molten metal plays an important role in the flow in weld pool, which are clarified by the specially designed experiments with small particles as well as the numerical simulations. The surface tension is also related to the penetration in arc welding. Therefore, a quantitative evaluation of surface tension is demanded for the development of materials and arc process control. However, there are few available data published on the surface tension of molten metals, since it depends on the temperature and the composition of materials. In this study, a new method was proposed for the evaluation of surface tension and its temperature dependence, in which it is evaluated by the equilibrium condition of acting forces under a given surface geometry, especially back surface. When this method was applied to the water pool and to the back surface of molten pool in the stationary gas tungsten arc welding of thin plate, following results were obtained. In the evaluation of surface tension of water, it was shown that the back surface geometry was very sensitive to the evaluation of surface tension and the evaluated value coincided with the surface tension of water. In the measurement of molten pool in the stationary gas tungsten arc welding, it was also shown that the comparison between the surface tension and temperature distribution across the back surface gave the temperature dependent surface tension. Applying this method to the mild steel and stainless steel plates, the surface tension with negative gradient for temperature is obtained. The evaluated values are well matched with ones in the published papers.

  • PDF

Maxillary protraction using customized mini-plates for anchorage in an adolescent girl with skeletal Class III malocclusion

  • Liang, Shuran;Xie, Xianju;Wang, Fan;Chang, Qiao;Wang, Hongmei;Bai, Yuxing
    • The korean journal of orthodontics
    • /
    • v.50 no.5
    • /
    • pp.346-355
    • /
    • 2020
  • The treatment of skeletal Class III malocclusion in adolescents is challenging. Maxillary protraction, particularly that using bone anchorage, has been proven to be an effective method for the stimulation of maxillary growth. However, the conventional procedure, which involves the surgical implantation of mini-plates, is traumatic and associated with a high risk. Three-dimensional (3D) digital technology offers the possibility of individualized treatment. Customized mini-plates can be designed according to the shape of the maxillary surface and the positions of the roots on cone-beam computed tomography scans; this reduces both the surgical risk and patient trauma. Here we report a case involving a 12-year-old adolescent girl with skeletal Class III malocclusion and midface deficiency that was treated in two phases. In phase 1, rapid maxillary expansion and protraction were performed using 3D-printed mini-plates for anchorage. The mini-plates exhibited better adaptation to the bone contour, and titanium screw implantation was safer because of the customized design. The orthopedic force applied to each mini-plate was approximately 400-500 g, and the plates remained stable during the maxillary protraction process, which exhibited efficacious orthopedic effects and significantly improved the facial profile and esthetics. In phase 2, fixed appliances were used for alignment and leveling of the maxillary and mandibular dentitions. The complete two-phase treatment lasted for 24 months. After 48 months of retention, the treatment outcomes remained stable.

A Study on Mold Fabrication and Forming for PDP Barrier Ribs (PDP 격벽 성형용 몰드 제작과 성형에 대한 연구)

  • Jo, In-Ho;Jeong, Sang-Cheol;Jeong, Hae-Do;Son, Jae-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.171-176
    • /
    • 2001
  • Plasma Display Panel(PDP) is a type of flat panel display utilizing the light emission produced by gas discharge. Barrier Ribs of PDP separating each sub-pixel prevents optical and electrical crosstalks from adjacent sub-pixels. Mold for forming barrier ribs has been newly researched to overcome the disadvantages of conventional manufacturing process such as screen printing, sand-blasting and photosensitive glass methods. Mold for PDP barrier ribs have stripes of micro grooves transferring glass-material wall. In this paper, Stripes of grooves of which width 48${\mu}{\textrm}{m}$ and 270${\mu}{\textrm}{m}$, depth 124${\mu}{\textrm}{m}$, pitch 274${\mu}{\textrm}{m}$ was acquired by machining hard and brittle materials of WC, Silicon, Alumina with dicing saw blade. Maximum roughness of the bottom and sidewall of the grooves was respectively 120nm, 287nm in grooving WC. Maximum tilt angle caused by difference between upper-most width and lower-most width was 2$^{\circ}$. Maximum Radius of bottom curvatures was 7.75${\mu}{\textrm}{m}$. This results satisfies the specification for barrier ribs of 50 inch XGA PDP if the groove form of mold was fully transferred to the barrier ribs. Barrier ribs were formed with Silicone rubber mold, which is transferred from grooved hard materials. Silicone rubber mold has elasticity accommodating the waveness of lower glass plate of PDP.

  • PDF

A Patterning Process for Organic Thin Films Using Discharge and Suction Needles (토출 및 흡입 Needle을 이용한 유기 박막 패터닝 공정)

  • Kim, Daeyeob;Shin, Dongkyun;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.79-84
    • /
    • 2020
  • Unlike a printing process, it is difficult to pattern organic thin films in the longitudinal (coating) direction using a coating process. In this paper, we have investigated the feasibility of patterning organic thin films using needles. To this end, we have slot-coated an aqueous poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) solution in the form of a fine stripe or large area and then applied the dual needle; one for discharging the main solvent of the underlying thin film and the other for sucking the dissolved thin film. We have found that the pattern width and depth increase as the moving speed of the plate decreases. However, it is observed that the sidewall slope is very gentle (the length of the slope is of the order of 200 ㎛) due to the fact that the discharged main solvent is widely spread and then isotropic etching occurs. With this scheme, we have also demonstrated that a fine stripe can be obtained by scanning the dual needle closely. To demonstrate its applicability to solution-processable organic light-emitting diodes (OLEDs), we have also fabricated OLED with the patterned PEDOT:PSS stripe and observed the insulation property in the strong light-emitting stripe.

Cervical spine reconstruction after total vertebrectomy using customized three-dimensional-printed implants in dogs

  • Ji-Won Jeon;Kyu-Won Kang;Woo-Keyoung Kim;Sook Yang;Byung-Jae Kang
    • Journal of Veterinary Science
    • /
    • v.25 no.1
    • /
    • pp.2.1-2.14
    • /
    • 2024
  • Background: Sufficient surgical resection is necessary for effective tumor control, but is usually limited for vertebral tumors, especially in the cervical spine in small animal neurosurgery. Objective: To evaluate the primary stability and safety of customized three-dimensional (3D)-printed implants for cervical spine reconstruction after total vertebrectomy. Methods: Customized guides and implants were designed based on computed tomography (CT) imaging of five beagle cadavers and were 3D-printed. They were used to reconstruct C5 after total vertebrectomy. Postoperative CT images were obtained to evaluate the safety and accuracy of screw positioning. After harvesting 10 vertebral specimens (C3-C7) from intact (group A) and implanted spines (group B), implant stability was analyzed using a 4-point bending test comparing with groups A and C (reconstituted with plate and pins/polymethylmethacrylate after testing in Group A). Results: All customized implants were applied without gross neurovascular damage. In addition, 90% of the screws were in a safe area, with 7.5% in grade 1 (< 1.3 mm) and 2.5% in grade 2 (> 1.3 mm). The mean entry point and angular deviations were 0.81 ± 0.43 mm and 6.50 ± 5.11°, respectively. Groups B and C significantly decreased the range of motion (ROM) in C3-C7 compared with intact spines (p = 0.033, and 0.018). Both groups reduced overall ROM and neutral zone in C4-C6, but only group B showed significance (p = 0.005, and 0.027). Conclusion: Customized 3D-printed implants could safely and accurately replace a cervical vertebra in dog cadavers while providing primary stability.

Evaluation of trueness of maxillary and mandibular denture bases produced with a DLP printer by immersion in a constant temperature water bath (DLP 프린터로 제작한 상악 및 하악 의치상의 항온수조 침적에 따른 진실도(trueness) 평가)

  • Dong-Yeon Kim;Gwang-Young Lee
    • Journal of Technologic Dentistry
    • /
    • v.46 no.2
    • /
    • pp.28-35
    • /
    • 2024
  • Purpose: To evaluate the three-dimensional trueness of upper and lower denture bases produced using a digital light processing (DLP) printer and immersed in a constant-temperature water bath. Methods: An edentulous model was prepared and fitted with denture bases and occlusal rims manufactured using base plate wax. After scanning the model, denture bases, and occlusal rims, complete denture designs were created. Using the designs and a DLP printer, 10 upper and 10 lower complete dentures were manufactured. Each denture was scanned before (impression surface of upper denture base before constant temperature water bath [UBC] and impression surface of lower denture base before constant temperature water bath [LBC] groups) and after (impression surface of upper denture base after constant temperature water bath [UAC] and impression surface of lower denture base after constant temperature water bath [LAC] groups) immersion in the constant-temperature water bath. Scanned files were analyzed by comparing reference and scanned data, with statistical analysis conducted using the Kruskal-Wallis test (α=0.05). Results: Statistical analysis revealed no significant differences between the UBC and LBC groups, nor between the UAC and LAC groups (p>0.05). However, significant differences were observed between the UBC and UAC groups and between the LBC and LAC groups, i.e., before and after the constant-temperature water bath for both maxillary and mandibular denture bases (p<0.05). Conclusion: Denture bases not immersed in the constant-temperature water bath (UBC and LBC groups) exhibited error values within 100 ㎛, whereas those immersed in the water bath (UAC and LAC groups) showed error values exceeding 100 ㎛.

Supplementary Woodblocks of the Tripitaka Koreana at Haeinsa Temple: Focus on Supplementary Woodblocks of the Maha Prajnaparamita Sutra (해인사 고려대장경 보각판(補刻板) 연구 -『대반야바라밀다경』 보각판을 중심으로-)

  • Shin, Eunje;Park, Hyein
    • MISULJARYO - National Museum of Korea Art Journal
    • /
    • v.98
    • /
    • pp.104-129
    • /
    • 2020
  • Designated as a national treasure of Korea and inscribed on the UNESCO World Heritage List, the Tripitaka Koreana at Haeinsa Temple is the world's oldest and most comprehensive extant version of the Tripitaka in Hanja script (i.e., Chinese characters). The set consists of 81,352 carved woodblocks, some of which have two or more copies, which are known as "duplicate woodblocks." These duplicates are supplementary woodblocks (bogakpan) that were carved some time after the original production, likely to replace blocks that had been eroded or damaged by repeated printings. According to the most recent survey, the number of supplementary woodblocks is 118, or approximately 0.14% of the total set, which attests to the outstanding preservation of the original woodblocks. Research on the supplementary woodblocks can reveal important details about the preservation and management of the Tripitaka Koreana woodblocks. Most of the supplementary woodblocks were carved during the Joseon period (1392-1910) or Japanese colonial period (1910-1945). Although the details of the woodblocks from the Japanese colonial period have been recorded and organized to a certain extent, no such efforts have been made with regards to the woodblocks from the Joseon period. This paper analyzes the characteristics and production date of the supplementary woodblocks of the Tripitaka Koreana. The sutra with the most supplementary woodblocks is the Maha Prajnaparamita Sutra (Perfection of Transcendental Wisdom), often known as the Heart Sutra. In fact, 76 of the total 118 supplementary woodblocks (64.4%) are for this sutra. Hence, analyses of printed versions of the Maha Prajnaparamita Sutra should illuminate trends in the carving of supplementary woodblocks for the Tripitaka Koreana, including the representative characteristics of different periods. According to analysis of the 76 supplementary woodblocks of the Maha Prajnaparamita Sutra, 23 were carved during the Japanese colonial period: 12 in 1915 and 11 in 1937. The remaining 53 were carved during the Joseon period at three separate times. First, 14 of the woodblocks bear the inscription "carved in the mujin year by Haeji" ("戊辰年更刻海志"). Here, the "mujin year" is estimated to correspond to 1448, or the thirtieth year of the reign of King Sejong. On many of these 14 woodblocks, the name of the person who did the carving is engraved outside the border. One of these names is Seonggyeong, an artisan who is known to have been active in 1446, thus supporting the conclusion that the mujin year corresponds to 1448. The vertical length of these woodblocks (inside the border) is 21 cm, which is about 1 cm shorter than the original woodblocks. Some of these blocks were carved in the Zhao Mengfu script. Distinguishing features include the appearance of faint lines on some plates, and the rough finish of the bottoms. The second group of supplementary woodblocks was carved shortly after 1865, when the monks Namho Yeonggi and Haemyeong Jangung had two copies of the Tripitaka Koreana printed. At the time, some of the pages could not be printed because the original woodblocks were damaged. This is confirmed by the missing pages of the extant copy that is now preserved at Woljeongsa Temple. As a result, the supplementary woodblocks are estimated to have been produced immediately after the printing. Evidently, however, not all of the damaged woodblocks could be replaced at this time, as only six woodblocks (comprising eight pages) were carved. On the 1865 woodblocks, lines can be seen between the columns, no red paint was applied, and the prayers of patrons were also carved into the plates. The third carving of supplementary woodblocks occurred just before 1899, when the imperial court of the Korean Empire sponsored a new printing of the Tripitaka Koreana. Government officials who were dispatched to supervise the printing likely inspected the existing blocks and ordered supplementary woodblocks to be carved to replace those that were damaged. A total of 33 supplementary woodblocks (comprising 56 pages) were carved at this time, accounting for the largest number of supplementary woodblocks for the Maha Prajnaparamita Sutra. On the 1899 supplementary woodblocks, red paint was applied to each plate and one line was left blank at both ends.

The Comparison on Illustrations of Elementary Science Textbooks in Koaea and Japan (한.일 국민학교 자연 교과서 삽화 비교 연구)

  • Park, Si-Hyoun;Woo, Jong-Ok
    • Journal of The Korean Association For Science Education
    • /
    • v.14 no.1
    • /
    • pp.58-69
    • /
    • 1994
  • In this study, with the problem of "What is the desirable illustrations?", the problem points of the existing textbooks were analyzed, and the opinions of experts concerning desirable illustrations were examined through questionaire survey, and by developing 'Analysis Framework of Illustrations', and Korean-Japanese 'science' textbooks were analyzed and compared with. The conclusions for the direction of korean 'science' textbooks are summarized as follows : 1) The numbers of korean illustrations should be more about two than one of per one page of the existing textbooks. 2) The korean illustrations for the 6th grade should be more largely inserted. 3) The more econmic space utilizing measure should be groped for looking at from the such side. 4) Though the kinds of Korean illustrations are mostly composed of photographs, pictures, illustrations, cartoons, etc. should be positively utilized. and the shapes of photographs should be diversified by such as square, round shape,omissions of background and others. 5) The distribution of players by sex should be considered envenly for male and female from the ascendency of male (1.5: 1). 6) It was found that it is desirable for the formation of role of illustrations of 20% for motive inducement, 45% for guidance for experimentation, 30% for presentation of data, and 5% for presentation of the results of experimentation. 7) The illustrations for guidance for experimentation should present important stages of experimentation process regardless the number of illustration. 8) It would be advantageous for motive induction to find the subject matters as possible as from the children's close actual life. 9) It is necessary to induce more freely method in utilizing Printing plate for inserting illustrations. 10) It is the result of research that the existing Korean textbooks are not suitable in inducing interest, and the positive strategy to induce interest is demanded. 11) It is required to select their location freely in accordance with the content regardless the. 12) In order to develop such illustrations, it is required to cultivate expert illustrators, and more economic investment is required for development of illustrations. The emphasis matters of revision of the 6th educational process of 'Inducement of study motive and emphasis on interest' is the change of presenting form and method of illustrations, which is expected to be rewarded with much good fruits.

  • PDF

Measurement of Width and Step-Height of Photolithographic Product Patterns by Using Digital Holography (디지털 홀로그래피를 이용한 포토리소그래피 공정 제품 패터닝의 폭과 단차 측정)

  • Shin, Ju Yeop;Kang, Sung Hoon;Ma, Hye Joon;Kwon, Ik Hwan;Yang, Seung Pil;Jung, Hyun Chul;Hong, Chung Ki;Kim, Kyeong Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.18-26
    • /
    • 2016
  • The semiconductor industry is one of the key industries of Korea, which has continued growing at a steady annual growth rate. Important technology for the semiconductor industry is high integration of devices. This is to increase the memory capacity for unit area, of which key is photolithography. The photolithography refers to a technique for printing the shadow of light lit on the mask surface on to wafer, which is the most important process in a semiconductor manufacturing process. In this study, the width and step-height of wafers patterned through this process were measured to ensure uniformity. The widths and inter-plate heights of the specimens patterned using photolithography were measured using transmissive digital holography. A transmissive digital holographic interferometer was configured, and nine arbitrary points were set on the specimens as measured points. The measurement of each point was compared with the measurements performed using a commercial device called scanning electron microscope (SEM) and Alpha Step. Transmission digital holography requires a short measurement time, which is an advantage compared to other techniques. Furthermore, it uses magnification lenses, allowing the flexibility of changing between high and low magnifications. The test results confirmed that transmissive digital holography is a useful technique for measuring patterns printed using photolithography.

A Study on the Copy of Tripitaka Koreana at Otani University in Kyoto, Japan (일본 오타니대학(大谷大學) 소장 고려대장경 인경본 연구)

  • Jeong, Eunwoo;Shin, Eunjae
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.4
    • /
    • pp.38-55
    • /
    • 2019
  • At Otani University in Kyoto, Japan, there is a rubbed copy of Tripitaka Koreana, presumably printed in 1381. According to the postscript of the copy, written by Saek Lee himself, the rubbed copy was made at Haeinsa temple in 1381 and was kept at Sinluksa temple in Yeuju. The copy was delivered as a gift to Japan in 1414 and now is kept at the Library of Otani University. Although an approximate summary of the content of the copy was reported in the early 2000s after a basic survey, details of the copy, including the concrete format and packaging paper, are not known yet. In this paper a detailed survey of the copy is conducted on the 109 pages. The copy is divided into two parts: the wrapping and the inner pages. The wrapping paper is divided into yellow and brown colors depending on the material of the paper. The yellow colorwrapping paper was possibly made in 1381 at the time of the rubbed printing, and the brown wrapping paper was repaired after being moved to Japan. Using funds collected in February 1380, the copy of Gyeong(經), Yul(律), and Ron(論) chapters was printed in April 1381. Binding of the copy was completed in September, and the wrapping paper with the title in gold was made in October 1380. The box for keeping Buddhist scriptures was manufactured in November 1380. The copy was moved to Sinluksa temple in April 1382 and delivered to Japan in 1414. At Otani University, the copy is stored in separate rectangular boxes 32.1×25.3cm in size with a height of 23.6cm. The rectangular plate on the four sides is red in external color but black colorinside. The box for keeping Buddhist scriptures was probably made in 1381, but a partial repair was made later. Because of the difficulty of executing a detailed survey of the box for Buddhist scriptures, it is hard to find out its nation and period of production. We look forward to studying the copy as well as the box for Buddhist scriptures in future.