• Title/Summary/Keyword: Printing machine

Search Result 177, Processing Time 0.026 seconds

Continuous Coating Process Development for PEFC Membrane Electrode Assembly (고분자 연료전지용 MEA 연속 코팅공정 개발)

  • Park, Seok-Hee;Yoon, Young-Gi;Kim, Chang-Soo;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.110-112
    • /
    • 2006
  • Membrane electrode assembly (MEA) for polymer electrolyte fuel cell (PEFC) are commonly prepared in the research laboratory by spraying, screen-printing and brushing catalyst slurry onto membrane or other support material like carbon paper or polyimide film in a batch style. These hand applications of the catalyst slurry are painstaking process with respect to precision of catalyst loading and reproducibility. It has been generally mentioned that the adoption of continuous process is very helpful to develop the reliable product. In the present work, we report the results of using continuous type coater with doctor-blade to coat catalyst slurry for preparing the MEA catalyst layers In a faster and highly reproducible fashion. We show that while expectedly faster than batch style, the machine coater requires the use of slurry of appropriate composition and a properly selected transfer decal material in order to achieve superior MEA plat lnw loading reproducibility. To make highly viscous catalyst slurry that is imperative for using coater, we use 40wt.% Nafion solution and minimize the content of organic solvent. And the choice of proper high surface area catalyst is important in the viewpoint of making well-dispersed slurry. After catalyst coating onto the support material, we transferred the catalyst layer to both sides of Nafion membrane by hot-pressing In this case, the degree of transfer was Influenced by hot-pressing condition including temperature, pressure, and time. To compare the transferring ability, we compared so many films and detaching papers. And among the support, polyethylene terephthalate(PET) film shows the prominent result.

  • PDF

Effect of surface treatment on shear bond strength of relining material and 3D-printed denture base

  • Park, Se-Jick;Lee, Joon-Seok
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.4
    • /
    • pp.262-272
    • /
    • 2022
  • PURPOSE. This study aimed to analyze the shear bond strength between the 3D-printed denture base and the chairside relining material, according to the surface treatment. MATERIALS AND METHODS. Cylindrical specimens were prepared using DENTCA Denture Base II. The experimental groups were divided into 6 (n = 10): no surface treatment (C), Tokuyama Rebase II Normal adhesive (A), sandblasting (P), sandblasting and adhesive (PA), sandblasting and silane (PS), and the Rocatec system (PPS). After bonding the chairside relining material to the center of the specimens in a cylindrical shape, they were stored in distilled water for 24 hours. Shear bond strength was measured using a universal testing machine, and failure mode was analyzed with a scanning electron microscope. Shear bond strength values were analyzed using one-way analysis of variance, and Tukey's honest significant difference test was used for post-hoc analysis (P < .05). RESULTS. Group PPS exhibited significantly higher shear bond strength than all other groups. Groups P and PA displayed significantly higher bond strengths than the control group. There were no significant differences between groups PS and A compared to the control group. Regarding the failure mode, adhesive failure occurred primarily in groups C and A, and mixed failure mainly in groups P, PA, PS, and PPS. CONCLUSION. The shear bond strength between the 3D-printed denture base and the chairside relining material exhibited significant differences according to the surface treatment methods. It is believed that excellent adhesive strength will be obtained when the Rocatec system is applied to 3D-printed dentures in clinical practice.

Color Laser Printer Identification through Discrete Wavelet Transform and Gray Level Co-occurrence Matrix (이산 웨이블릿 변환과 명암도 동시발생 행렬을 이용한 컬러 레이저프린터 판별 알고리즘)

  • Baek, Ji-Yeoun;Lee, Heung-Su;Kong, Seung-Gyu;Choi, Jung-Ho;Yang, Yeon-Mo;Lee, Hae-Yeoun
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.197-206
    • /
    • 2010
  • High-quality and low-price digital printing devices are nowadays abused to print or forge official documents and bills. Identifying color laser printers will be a step for media forensics. This paper presents a new method to identify color laser printers with printed color images. Since different printer companies use different manufactural systems, printed documents from different printers have little difference in visual. Analyzing this artifact, we can identify the color laser printers. First, high-frequency components of images are extracted from original images with discrete wavelet transform. After calculating the gray-level co-occurrence matrix of the components, we extract some statistical features. Then, these features are applied to train and classify the support vector machine for identifying the color laser printer. In the experiment, total 2,597 images of 7 printers (HP, Canon, Xerox DCC400, Xerox DCC450, Xerox DCC5560, Xerox DCC6540, Konica), are tested to classify the color laser printer. The results prove that the presented identification method performs well with 96.9% accuracy.

A study of the antifungal properties and flexural strength of 3D printed denture base resin containing titanium dioxide nanoparticles (이산화티타늄 나노입자를 함유한 3D 프린팅 의치상 레진의 항진균성 및 굽힘 강도에 대한 연구)

  • Seok-Won Yoon;Young-Eun Cho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.2
    • /
    • pp.95-103
    • /
    • 2024
  • Purpose. With the advancement of digital technology, 3D printing is being utilized in the fabrication of denture base. Nevertheless, increasing microbial adhesion to the surface of denture base has been reported as the disadvantage of 3D-printed denture base. The purpose of this study is to investigate the antifungal properties and flexural strength of 3D-printed denture base resin according to the different contents of titanium dioxide nanoparticles. Materials and methods. Titanium dioxide nanoparticles were mixed with the 3D printing resin at the ratios of 0.5, 1, 1.5, and 2 wt%. Twenty specimens per each group were printed in the form of cylindrical shape (diameter: 20 mm, height: 3 mm) to evaluate antifungal properties. Ten specimens from each group underwent polishing using autogrinder, while the remaining ten specimens did not. Candida albicans in hyphae form was inoculated onto each specimen, optical density and colony-forming unit were analyzed. The surface of the specimen was observed using scanning electron microscopy. To evaluate the flexural strength, twenty specimens per each group were 3D printed in the form of rectangular prism shape (length: 64 mm, height: 10 mm, width: 3 mm) and three-point bending tests were conducted using universal testing machine according to ISO 20795-1. Results. Colony-forming unit of C.albicans and optical density of culture medium showed no difference between non-polished groups, but decreased in the polished groups at concentration of 1, 1.5, 2 wt% titanium dioxide nanoparticles. Flexural strength increased with titanium dioxide nanoparticle at concentration of 0.5, 1, 1.5 wt%, but decreased at 2 wt% compared to 1.5 wt%. Conclusion. When 1.5 wt% of titanium dioxide nanoparticles were added to the 3D-printed denture base resin with polishing, antifungal properties were increased.

Marginal and internal fit of interim crowns fabricated with 3D printing and milling method (3D 프린팅 및 밀링 방법으로 제작된 임시 보철물 적합도 비교 분석)

  • Son, Young-Tak;Son, KeunBaDa;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.4
    • /
    • pp.254-261
    • /
    • 2020
  • Purpose: The purpose of this study was to assess the marginal and internal fit of interim crowns fabricated by two different manufacturing method (subtractive manufacturing technology and additive manufacturing technology). Materials and Methods: Forty study models were fabricated with plasters by making an impression of a master model of the maxillary right first molar for ceramic crown. On each study model, interim crowns (n = 40) were fabricated using three types of 3D printers (Meg-printer 2; Megagen, Zenith U; Dentis, and Zenith D; Dentis) and one type milling machine (imes-icore 450i; imes-icore GmbH). The internal of the interim crowns were filled with silicon and fitted to the study model. Internal scan data was obtained using an intraoral scanner. The fit of interim crowns were evaluated in the margin, absolute margin, axial, cusp, and occlusal area by using the superimposition of 3D scan data (Geomagic control X; 3D Systems). The Kruskal-wallis test, Mann-Whitney U test and Bonferroni correction method were used to compare the results among groups (α = 0.05). Results: There was no significant difference in the absolute marginal discrepancy of the temporary crown manufactured by three 3D printers and one milling machine (P = 0.812). There was a significant difference between the milling machine and the 3D printer in the axial and occlusal area (P < 0.001). The temporary crown with the milling machine showed smaller axial gap and higher occlusal gap than 3D printer. Conclusion: Since the marginal fit of the temporary crown produced by three types of 3D printers were all with in clinically acceptable range (< 120 ㎛), it can be sufficiently used for the fabrication of the temporary crown.

Flexural strength of various kinds of the resin bridges fabricated with 3D printing (3D 프린팅으로 제작된 여러 종류의 레진브릿지의 굴곡강도에 대한 연구)

  • Park, Sang-Mo;Kim, Seong-Kyun;Park, Ji-Man;Kim, Jang-Hyun;Jeon, Yoon-Tae;Koak, Jai-Young
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.4
    • /
    • pp.260-268
    • /
    • 2017
  • Purpose: Manufacturing with AM (Additive manufacturing) technique has many advantages; but, due to insufficient study in the area, it is not being widely used in the general clinic. In this study, differences of flexural strength among various materials of 3 unit fixed dental prosthesis were analyzed. Materials and Methods: A metal jig for specimens that had a 3-unit-fixed dental prosthesis figure were fabricated. The jigs were made appropriately to the specifications of the specimens. Three different kinds of materials of specimens which were NC (mathacrylic esther based), DP-1 (Bisphenol A epoxy acrylate type oligomer based), and DT-1 (urethane acrylate based) were printed with DLP machine. Five specimens for each kind of material were printed with an angle of $30^{\circ}$ from the horizontal surface. The specimens were placed on the jig and the flexural strength was measured and recorded using Universal testing machine. The recorded data was analyzed in SPSS using One-way ANOVA and Tukey HSD to determine the significance of the differences of flexural strength among the groups. Results: The flexural strengths of each group were the followings: NC, $1119{\pm}305$ N; DP-1, $619{\pm}150$ N; DT-1, $413{\pm}65N$. Using One-way ANOVA and Tukey Honestly Significant Difference test, significant difference was found between NC and the other groups (P < 0.05), but there was no significant difference between DP-1 and DT-1 (P > 0.05). Conclusion: Higher flexural strength was shown in 3-unit-fixed dental prosthesis that were 3D printed using a DLP machine with NC material.

In vitro evaluation of the wear resistance of provisional resin materials fabricated by different methods (제작방법에 따른 임시 수복용 레진의 마모저항성에 관한 연구)

  • Ahn, Jong-Ju;Huh, Jung-Bo;Choi, Jae-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.110-117
    • /
    • 2019
  • Purpose: This study was to evaluate the wear resistance of 3D printed, milled, and conventionally cured provisional resin materials. Materials and methods: Four types of resin materials made with different methods were examined: Stereolithography apparatus (SLA) 3D printed resin (S3P), digital light processing (DLP) 3D printed resin (D3P), milled resin (MIL), conventionally self-cured resin (CON). In the 3D printed resin specimens, the build orientation and layer thickness were set to $0^{\circ}$ and $100{\mu}m$, respectively. The specimens were tested in a 2-axis chewing simulator with the steatite as the antagonist under thermocycling condition (5 kg, 30,000 cycles, 0.8 Hz, $5^{\circ}C/55^{\circ}C$). Wear losses of the specimens were calculated using CAD software and scanning electron microscope (SEM) was used to investigate wear surface of the specimens. Statistical significance was determined using One-way ANOVA and Dunnett T3 analysis (${\alpha}=.05$). Results: Wear losses of the S3P, D3P, and MIL groups significantly smaller than those of the CON group (P < .05). There was no significant difference among S3P, D3P, and MIL group (P > .05). In the SEM observations, in the S3P and D3P groups, vertical cracks were observed in the sliding direction of the antagonist. In the MIL group, there was an overall uniform wear surface, whereas in the CON group, a distinct wear track and numerous bubbles were observed. Conclusion: Within the limits of this study, provisional resin materials made with 3D printing show adequate wear resistance for applications in dentistry.

Work Improvement by Computerizing the Process of Shielding Block Production (차폐블록 제작과정의 전산화를 통한 업무개선)

  • Kang, Dong Hyuk;Jeong, Do Hyeong;Kang, Dong Yoon;Jeon, Young Gung;Hwang, Jae Woong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.87-90
    • /
    • 2013
  • Purpose: Introducing CR (Computed Radiography) system created a process of printing therapy irradiation images and converting the degree of enlargement. This is to increase job efficiency and contribute to work improvement using a computerized method with home grown software to simplify this process, work efficiency. Materials and Methods: Microsoft EXCEL (ver. 2007) and VISUAL BASIC (ver. 6.0) have been used to make the software. A window for each shield block was designed to enter patients' treatment information. Distances on the digital images were measured, the measured data were entered to the Excel program to calculate the degree of enlargement, and printouts were produced to manufacture shield blocks. Results: By computerizing the existing method with this program, the degree of enlargement can easily be calculated and patients' treatment information can be entered into the printouts by using macro function. As a result, errors in calculation which may occur during the process of production or errors that the treatment information may be delivered wrongly can be reduced. In addition, with the simplification of the conversion process of the degree of enlargement, no copy machine was needed, which resulted in the reduction of use of paper. Conclusion: Works have been improved by computerizing the process of block production and applying it to practice which would simplify the existing method. This software can apply to and improve the actual conditions of each hospital in various ways using various features of EXCEL and VISUAL BASIC which has already been proven and used widely.

  • PDF

The Study on the Characteristic Sound Intensity and Frequency of Noise Exposure at Occupational Sites (산업장 소음의 강도 및 주파수 특성에 관한 조사연구)

  • Kim, Kwang Jong;Cha, Chul Whan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.2
    • /
    • pp.181-191
    • /
    • 1991
  • The present study determined the overall noise level and the distribution of sound pressure level over audible frequency range of noise produced at various work sites. Work-related noise greater than 80dBA produced from 98 separate work sites at 37 manufacturing companies and machine shops were analysed for the overall sound level (dBA) and frequency distribution. In addition, to determine the possible hearing loss related to work site noise, a hearing test was also conducted on 1,374 workers in these work sites. The results of the study were as follows ; 1. Of the total 98 work sites, 57 work sites(58.2%) produced noise exceeding threshold limit value (${\geq}90dBA$) set by the Ministry 01 Labor. In terms of different manufacturing industries the proportion of work sites which exceeded 90dBA was the highest for the cut-stone products industry with 6/6 work sites and lowest for the commercial printing industry with 1/13 work sites. 2. The percentage of workers who were exposed to noise greater than 90dBA was 19.8% (1,040 workers) 01 the total 5,261 workers. In terms of different industries, cut-stone products industry had the most workers exposed to noise exceeding 90dBA with 82.8%, textile bleaching and dyeing industry was next at 30.6% followed by fabricated metal products industry with 27.9%, plastic products manufacturing industry had the lowest percentage of workers exposed to 90dBA exceeding noise with 4.5%. 3. There was a statistically significant correlation between the frequency of noise-induced hearing loss and the percentage of workers exposed to noise exceeding 90dBA (P<0.05). 4. The frequency analysis of noise produced at the 98 work sites revealed that 44 work sites (44.9%) had the maximum sound pressure level at high-frequencies greater than 2KHz. In addition, significantly higher sound pressure level was detected at the high-frequencies at 90dBA exceeding work sites as compared to below 90dBA work sites (P<0.01). 5. The differences in sound level meter's A-and C-weighted sound pressure levels were analysed by frequencies. Of the 28 work sites which showed 0-1 dB difference in the two weighted sound levels, 20 work sites (71.4%) had significantly higher sound pressure levels at high-frequencies greater than 2KHz (P<0.01). Furthermore, there was a tendency for higher sound pressure levels to occur in the high-frequency range as the differences in the two weighted sound levels decreased.

  • PDF

A Study on the Selection of Inducement Industry in Hinterland of Busan New Port - According to Analysis on the Structure in International Division of Labor among Korea, China and Japan and the Export-Import Structure of Busan Port against China and Japan - (부산 신항 배후단지 유치산업의 선정에 관한 연구 -한.중.일 국제분업구조와 부산항의 대 중.일 수출입구조 분석에 따른-)

  • Kim, Jeong-Su
    • Journal of Korea Port Economic Association
    • /
    • v.25 no.4
    • /
    • pp.107-130
    • /
    • 2009
  • Future of Busan New Port may depend even on the efficient use of the port hinterland. Accordingly, selection of which industry according to which standard in the port hinterland is another task. In order to solve this problem, it analyzed the structure in international division of labor with China and Japan, which are possessing considerable portion in the trading volume with our country, and the export-import structure of Busan Port against China and Japan, by using RCA index and GL index as well as export-import results. In addition to this, the proper industry was selected on the basis of 10 strategic industries for development in Busan. According to the analytical results, the industries, which will be induced in the hinterland of Busan New Port, include textile clothing, pulp printing matter, jewelry, basic metal nonmetallic product, machine lectric product, automobile, shipbuilding, optics accurate machinery medical treatment musical instrument, nano material, fuel battery, aerospace and intelligent robot.

  • PDF