• Title/Summary/Keyword: Printing Type

Search Result 510, Processing Time 0.026 seconds

Matching Design of a Tension Controller with Pendulum Dancer in Roll-to-Roll Systems (고속 롤투롤 시스템의 펜듈럼 덴서를 사용한 장력계어기 매칭 설계)

  • Kang, Hyun-Kyoo;Shin, Kee-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.81-89
    • /
    • 2009
  • Dancer systems are typical equipment for attenuation of tension disturbances. Lately, demands for high speed roll-to-roll machines are rising but it is prior to attenuate the tension variation on the web entering into the printing zone to achieve the speed increment. Maintaining a constant tension before the first printing cylinder is the key of high speed, high quality printing. Dancer has been researched in two ways, whether it is controlled or not. The first one is active dancer and the other one is passive dancer. In the active dancer, a position of idle roll of dancer is measured and the roll is moved by external hydraulic cylinder to control tension disturbances. While the passive one composed with spring, damper and idle roll has no external actuator to position the idle roll. The tension disturbance causes movement of dancer roll and the displacement of the roll regulates the tension variation. On the other hand a composite type of dancer is applied for roll-to-roll printing machines. It has same apparatus as passive dancer. The displacement of roll is measured and front(or rear) driven roller is controlled to position the roll. In this paper, it is presented an analysis of pendulum dancer including position feedback PI control and logic for PI gain tuning in roll-to-roll machines. Pole-zero map and root locus with varying system parameters gives a design method for control of the dancer.

Deterioration and Preservation Technique of Wooden Cultural Properties (Part 2) -Biodeterioration of Square Post to Support Wooden Printing Blocks Shelves, Janggeongpanjeon- (목조문화재 열화 및 보존기술에 관한 연구(제2보) -장경각 구조부재중 실내 판가 기둥의 생물적 열화 특성-)

  • Kim, Yeong-Suk;Han, Sang-Mi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.64-72
    • /
    • 2007
  • The biodeterioration behaviors of square post to support the wooden printing blocks Shelves in the Janggeongpanjeon were investigated according to the positions and parts of square post, and environmental conditions. It was found that a high differences of deterioration in the progressing levels of wood decay, according to the positions and parts of square post, and environmental conditions. The decay levels were very high and still progressing in the contacted areas with stone foundation which are about up to 50 cm above it. In the decay type, white rot fungi was mainly affected in the inside of building which mainly made of softwood. The decay in the square posts to support the wooden printing block shelves inside of building was worse in the rear side, compared to front side. The insects was not found in most of square posts excluding the post which was neighboring at the infected round column by insect.

Preparation of Photocurable Slurry for DLP 3D Printing Process using Synthesized Yttrium Oxyfluoride Powder (합성 불산화 이트륨 분말을 이용한 DLP 3D 프린팅용 광경화성 슬러리 제조)

  • Kim, Eunsung;Han, Kyusung;Choi, Junghoon;Kim, Jinho;Kim, Ungsoo
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.532-538
    • /
    • 2021
  • In this study, a spray dryer is used to make granules of Y2O3 and YF3, and then Y5O4F7 is synthesized following heat treatment of them under Ar gas atmosphere at 600 ℃. Single and binary monomer mixtures are compared and analyzed to optimize photocurable monomer system for DLP 3D printing. The mixture of HEA and TMPTA at 8:2 ratio exhibits the highest photocuring properties and low viscosity with shear thinning behavior. The optimized photocurable monomer and synthesized Y5O4F7 are therefore mixed and applied to printing process at variable solid contents (60, 70, 80, & 85 wt.%) and light exposure times. Under optimal light exposure conditions (initial exposure time: 1.2 s, basic exposure time: 5 s), YOF composites at 60, 70 & 80 wt.% solid contents are successfully printed. As a result of measuring the size of the printed samples compared to the dimensions of the designed bar type specimen, the deviation is found to increase as the YOF solid content increases. This shows that it is necessary to maximize the photocuring activity of the monomer system and to optimize the exposure time when printing using a high-solids ceramic slurry.

High Temperature Properties of Cement Mortar Using EVA, EVCL Redispersible Polymer Powder and Fly Ash (EVA, EVCL 분말수지와 플라이애시를 혼입한 시멘트 모르타르의 고온특성)

  • Song, Hun;Shin, Hyeonuk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.365-372
    • /
    • 2018
  • 3D printing technology of construction field can be divided into structural materials, interior and exterior finishing materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a additive type manufacturing, and the role of a redispersible polymer powder is important. But, high temperatures, redispersible polymer cement base material beget dehydration and micro crack of cement matrix. In this research, we developed a EVA, EVCL redispersible polymer cement base material applicable as a 3D printing exterior materials, confirmed density and strength characteristics for application as an exterior materials, a flame retardancy test for improving the fire resistance of buildings and confirmed its possibility. From the test result, developed EVCL redispersible polymer cement mortar showed good stability in high temperatures. These high temperature stability is caused by the ethylene-vinyl chloride binding. Thus, this result indicates that it is possible to fire resistant 3D printing interior and exterior finishing materials.

Laser Additive Manufacturing Technology Review (레이저 적층 제조 기술 동향)

  • Hwang, Myun Joong;Cho, Jungho
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.15-19
    • /
    • 2014
  • Additive manufacturing technology is taking great attentions in these days because the term 3D-printing became a hot issue as the next generation manufacturing paradigm. Especially, laser additive manufacturing is at the center of interest thanks to the accuracy compared to other heat sources. In this report, recent papers about laser additive manufacturing are analyzed and reviewed. General technology is specified into three different categories and they are laser sintering, laser melting and laser metal deposition. Similarities and differences are clearly described by detailed technologies and used materials type. Representative application examples are selected then future of this technology is expected through those applications. Additionally, market of laser additive manufacturing systems itself and application fields are also predicted based on present 3D-printing market and technical progressions.

Emission Characteristics of Flat Fluorescent Lamp for LCD Backlight Using Inert Gas Mixture

  • Heo, Sung-Taek;Lee, Yang-Kyu;Kang, Jong-Hyun;Yoon, Seung-Il;Oh, Myung-Hoon;Lee, Dong-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1522-1525
    • /
    • 2007
  • In this study, flat fluorescent lamps (FFLs) having surface discharge structures was fabricated by screen printing technique and were studied using spectraradiometer and square pulse power supply. Two types of FFLs having different shapes of electrodes (crosstype and line-type structure) were compared with variation of discharge shape and mixed gas ratio.

  • PDF

Fabrication of organic thin film transistor using ink-jet printing technology

  • Kim, Dong-Jo;Jeong, Sun-Ho;Park, Bong-Kyun;Lee, Sul;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1126-1129
    • /
    • 2006
  • Here we developed a conductive ink which contains silver nanoparticles from which the electrodes for organic thin film transistor were directly patterned by ink-jet printing. To fabricate a coplanar type OTFT, solution processable semiconducting oligomer, ${\alpha},{\omega}-dihexylquaterthiophene$ (DH4T) was drop-cast onto between the ink-jet printed silver electrodes and I-V characteristics were measured.

  • PDF

Triisopropylsilyl pentacene organic thin-film transistors by ink-jet printing method

  • Park, Young-Hwan;Kang, Jung-Won;Kim, Yong-Hoon;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1135-1138
    • /
    • 2006
  • By ink-jet printing method, organic thin-film transistors (OTFTs) having soluble 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS pentacene) as an active material were fabricated. The TIPS pentacene solution was made with chlorobenzene and anisole. The solutions were printed on poly (4-vinylphenol) (PVP) dielectric layers and source/drain electrodes by piezo-type heads for bottom contact OTFTs. The dielectric layers had untreated or HMDS-treated conditions. The chlorobenzene device showed the highest field effect mobility of $0.016\;cm^2/Vs$ and the anisole HMDS-treated device shows the highest $I_{on}/I_{off}$ ratio of $10^5$.

  • PDF

Cell Fabrication and Performances of SOFC prepared by DBM and SPM

  • Kim, Gwi-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.286-288
    • /
    • 2007
  • The research and development for the solid oxide fuel cell have been promoted rapidly and extensively in recent years, because of their high efficiency and future potential. Therefore this paper describes the manufacturing method and characteristics of anode electrode for solid oxide fuel cell, by the way, Ni-YSZ materials are used as anode of solid oxide fuel cell widely. In order to reduce production costs, we have fabricated single solid oxide fuel cell by doctor blade and screen printing method. Disk-type planar solid oxide fuel cell with an effective electrode area of about $7cm^2$ were fabricated and run for 500 h to investigate cell performance. The current density at a voltage of 0.7 V was $850mA/cm^2$.

A Study on the Measurement of Viscosity by the Small Capacity Torque Transducer (미소용량형 토크변환기에 의한 점도측정에 관한 연구)

  • Kim, Gap-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.16-21
    • /
    • 1999
  • Recently, the rheology on the fluidity of materials has been progressed remarkably. Viscosity measurement for precision-accuracy has needed very important to measure the rheological properties of materials in the field of chemistry-fiber, paint, printing-ink, plastics, rubber, foodstuff-industry, etc. And many methods of measurement have been developed lately. So in this experimental study, small capacity torque transducer with type of strain gage, different method against other existing viscometers, measured viscosity about a liquid that has flowing characteristics of newtonian liquid. Using the assumed computational equation of viscosity, it has same value of viscosity in each different radius of rotating cylinder. In the result, this equipment will be used in the viscosity measurement of a liquid taking flowing characteristics of newtonian liquid.

  • PDF