• Title/Summary/Keyword: Printing Type

Search Result 510, Processing Time 0.027 seconds

Evaluation of DC Resistive Humidity Sensors Based on Conductive Carbon Ink (전도성 카본 잉크를 이용한 직류 저항형 습도센서 제작 및 평가)

  • An, Taechang
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.397-401
    • /
    • 2017
  • A DC resistance type humidity sensor using conductive carbon ink was fabricated and its performance was evaluated. The humidity sensor was fabricated using a screen printing technique and have a structure that does not require additional metal electrodes to measure resistance change. To evaluate the performance of the humidity sensor, we measured the DC resistance change under various relative humidity levels. The fabricated humidity sensor showed a resistance change of about $2.5{\sim}50k{\Omega}$ in 11 ~ 95% RH environment. It also shows a linear relationship in the relative humidity versus log DC resistance graph. In comparison with commercial humidity sensor under real environment, it can be confirmed that the resistance of the humidity sensor changes to almost the same level as the measured humidity. These results show that the resistance type humidity sensor can be operated stably in actual environment.

Evaluation of Refining Strategies for Combined use of Softwood and Eucalyptus Pulps in Papermaking

  • Manfredi, Vail
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.37-42
    • /
    • 2006
  • The paper discusses the combined use of softwood and eucalyptus kraft pulps in the production of printing and writing papers. Looking for process and paper quality optimization, refining pilot plant trails were carried to identify the effects of refining type (mixed or separate) and intensities (specific edge load), and also furnish composition (amount of each pulp in mixture) on final paper quality and process costs. The basic effects on pulp fibers were evaluated against paper quality properties, such as physical strengths, bulk, vessel picking, opacity and porosity, as well as the interactions with papermaking process, such as estimates of paper machine runnability, paper breaks and industrial refining control. The results show that the furnish composition and the type of refining has a significant effect on properties related with both final paper quality and total costs. The best alternative for printing and writing papers was identified for mixed refining, under the lowest refining intensity, and with the highest dosage of eucalyptus pulp.

  • PDF

High performance inkjet printed polymer CMOS integrated circuits

  • Baeg, Kang-Jun;Kim, Dong-Yu;Koo, Jae-Bon;Jung, Soon-Won;You, In-Kyu;Noh, Yong-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.67-70
    • /
    • 2009
  • Printed electronics are emerging technology to realize various microelectronic devices via a cost-effective method. Here we introduce high performance inkjet printed polymer field-effect transistors and application to complementary integrated circuits with p-type and n-type conjugated polymers. The performance of devices highly depends on the selection of dielectrics, printing condition and device architecture. The device optimization and performances of various integrated circuits, e.g., complementary inverters and ring oscillators will be mainly discussed in this talk.

  • PDF

Self-Alignment Ink-Jet Printed Light Emitting Devices and Light Emitting Seals

  • Okada, Hiroyuki;Matsui, Kenta;Naka, Shigeki;Shibata, Miki;Ohmori, Masahiko;Kurachi, Naomi;Sawamura, Momoe;Suzuki, Shin-Ichi;Inoue, Toyokazu;Miyabayashi, Takeshi;Murase, Makoto;Takao, Yuuzou;Hibino, Shingo;Bessho, Hisami
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.449-452
    • /
    • 2009
  • Ink-jet printed (IJP) self-aligned (SA) organic light emitting diodes (OLEDs) and its application to light emitting seal have investigated. Ink-jet printing of light emitting material is carried out onto transparent anode covered with insulating material. Laminated light emitting seal with SA IJP OLED without photo - lithographic process and any vacuum process, noncontact type electromagnetic power supply without electric power supply line, and light emitting tag with network type RF communication terminal by controlling display information were demonstrated.

  • PDF

A Study on Hydrophobic Surface Treatment for Microfluidic System Fabrication Based on SLA 3D Printing Method (SLA 3D 프린팅 방식 기반의 미세 유체 시스템 제작을 위한 소수성 표면 처리 연구)

  • Jae Uk Heo;Seo Jun Bae;Do Jin Im
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.105-111
    • /
    • 2024
  • The SLA (Stereolithography Apparatus) method is a type of 3D printing technique predicated on the transformation of liquid photocurable resin into a solid form through UV laser exposure, and its application is increasing in various fields. In this study, we conducted research to enhance the hydrophobicity and transparency of SLA 3D printing surfaces for microfluidic system production. The enhancement of surface hydrophobicity in SLA outputs was attainable through the application of hydrophobic coating methods, but the coating durability under different conditions varied depending on the type of hydrophobic coating. Additionally, to simultaneously achieve the required transparency and hydrophobic properties for the fabrication of microfluidic systems, we applied hydrophobic coatings to the proposed transparency enhancement method from prior research and compared the changes in contact angles. Teflon coating was proposed as a suitable hydrophobic coating method for the fabrication of microfluidic systems, given its excellent transparency and high coating durability in various environmental conditions, in comparison to titanium dioxide coating. Finally, we produced an Electrophoresis of Charged Droplet (ECD) chip, one of the digital microfluidics systems, using SLA 3D printing with the proposed Teflon coating method (Fluoropel 800). Droplet manipulation was successfully demonstrated with the fabricated chip, confirming the potential application of SLA 3D printing technology in the production of microfluidic systems.

Design and Evaluation of a Knee Protector using a 3D Printing Pad (3D 프린팅 패드를 활용한 무릎 보호대의 설계 및 평가)

  • Xi Yu Li;Jung Hyun Park;Jeong Ran Lee
    • Fashion & Textile Research Journal
    • /
    • v.25 no.2
    • /
    • pp.221-229
    • /
    • 2023
  • This study aims to develop knee protectors that provide high safety and fitness, while incorporating a motion-adaptable 3D-printed pad. These protectors were evaluated by individuals who experience knee discomfort or pain. The results are as follows. First, the 3Dprinted pad design of a hexagonal mesh structure, which is modeled for excellent appearance and knee movement. Each unit of the mesh has a outer layer of 2mm thick, a spacer layer of 1 mm in diameter, and is connected by a 1.5 mm bridge. The bridge was extended up to 1.2 cm. Second, the knee brace was designed in three types - cylinder, strap, and combination by Universal design. Impact protection measurements of the three knee protectors demonstrated roughly 80% reduction in impact. Third, based on usability evaluation, cylinder type protectors have the highest ratings in most areas, primarily because of their ease of use. The strap type protector received positive reviews in terms of appearance and care, and the combination type provided stable knee protection. This study demonstrated the potential industrial application of 3D printing technology by designing and evaluating protective products for the human body. The results of this study are expected to aid knee protector manufacturers in developing practical products and promoting the development of protective equipment for other body parts or purposes.

The Effect of Manufacturing Method Preferences for Different Product Types on Purchase Intent and Product Quality Perception (제품유형에 따른 제조방식 선호가 구매의도와 품질지각에 미치는 효과)

  • Lee, Guk-Hee;Park, Seong-Yeon
    • Science of Emotion and Sensibility
    • /
    • v.19 no.4
    • /
    • pp.21-32
    • /
    • 2016
  • Studies have observed various phenomena regarding the effect of the interaction between type, price, and brand image of a product on consumers' purchase intent and product quality perception. Yet, few have studied the effect of the interaction between product type and manufacturing method on these factors. However, the advent of three-dimensional (3D) printers added a new manufacturing method, 3D printing, to the traditional methods of handicraft and automated machine-based production, and research is necessary since this new framework might affect consumers' purchase intent and product quality perception. Therefore, this study aimed to verify the effects of the interaction between product type and manufacturing method on purchase intent and product quality perception. To achieve this, in our experiment 1, we selected product types with different characteristics (drone vs. violin vs. cup), and measured whether consumers preferred different manufacturing methods for each product type. The results showed that consumers preferred the 3D printing method for technologically advanced products such as drones, the handmade method for violins, and the automated machine-based manufacturing method, which allows mass production, for cups. Experiment 2 attempted to verify the effects of the differences in manufacturing method preferences for each product type on consumers' purchase intent and product quality perception. Our findings are as follows: for drones, the purchase intent was highest when 3D printing was used; for violins, the purchase intent was highest when the violins were handmade; for cups, the purchase intent was highest when machine-based manufacturing was used. Moreover, whereas the product quality perception for drones did not differ across different manufacturing methods, consumers perceived that handmade violins had the highest quality and that cups manufactured with 3D printing had the lowest quality (the purchase intent for cups was also lowest when 3D printing was used). This study is anticipated to provide a wide range of implications in various areas, including consumer psychology, marketing, and advertising.

Development of a Microarrayer for DNA Chips

  • Kim Sang Bong;Jeong Nam Soo;Kim Suk Yeol;Lee Myung Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.1
    • /
    • pp.36-42
    • /
    • 2002
  • Microarrayer is used to make DNA chip and microarray that contain hundreds to thousands of immobilized DNA probes on surface of a microscope slide. This paper shows the develop-ment results for a printing type of microarrayer. It realizes a typical, low-cost and efficient microarrayer for generating low density micro array. The microarrayer is developed by using a prependicular type robot with three axes. It is composed of a computer-controlled three-axes robot and a pen tip assembly. The key component of the arrayer is the print-head containing the tips to immobilize cDNA, genomic DNA or similar biological material on glass surface. The robot is designed to automatically collect probes from two 96-well plates with up to 12 pens at the same time. To prove the performance of the developed microarrayer, we use the general water types of inks such as black, blue and red. The inks are distributed at proper positions of 96 well plates and the three color inks are immobilized on the slide glass under the operation procedure. As the result of the test, we can see that it has sufficient performance for the production of low integrated DNA chip consisted of 96 spots within $1cm^2$ area.