• Title/Summary/Keyword: Printer Design

Search Result 269, Processing Time 0.027 seconds

Evaluation of the accuracy of provisional restorative resins fabricated using dental 3D printers (치과용 3D 프린터로 제작된 임시 수복용 레진의 정확도 평가)

  • Kim, Min-su;Kim, Won-Gi;Kang, Wol
    • Journal of Korean society of Dental Hygiene
    • /
    • v.19 no.6
    • /
    • pp.1089-1097
    • /
    • 2019
  • Objectives: The purpose of this study is to assess the accuracy of provisional restorative resins fabricated using dental three-dimensional (3D) printers. Methods: Provisional restorative resins were fabricated using the first molar of the right mandibular. Three groups comprising a total of 24 samples of such resins were fabricated. The prepared abutment was scanned initially and then designed using a computer-aided design (CAD) software. The conventional subtractive manufacturing system was employed to fabricate the first group of resins, while the second and third groups were fabricated using a digital light processing (DLP) 3D printer and a stereolithography (SLA) 3D printer, respectively. The internal surfaces of the resins were scanned and 3D measurements of the resins were taken to confirm their accuracy. Results: The root-mean-square deviation (RMS±SD) of the accuracy of the resins fabricated using the conventional subtractive manufacturing system, DLP 3D printer, and SLA 3D printer were 68.83±2.22 ㎛, 74.63±6.23 ㎛, and 61.74±4.09 ㎛, respectively. A one-way analysis of variance (ANOVA) test showed significant differences between the three groups (p < 0.05). Conclusions: Provisional restorative resins fabricated using DLP and SLA 3D printers demonstrated clinically-acceptable results.

Design of an Integrated High Voltage Pulse Generation circuit for Driving Piezoelectric Printer Heads (피에조일렉트릭 프린터 헤드 구동을 위한 집적화된 고전압 펄스 발생 회로의 설계)

  • Lee, Kyoung-Rok;Kim, Jong-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.80-86
    • /
    • 2011
  • This paper presents an integrated variable amplitude high voltage pulse generation circuit with low power and small size for driving industrial piezoelectric printer heads. To solve the problems of large size and power overhead of conventional pulse generators that usually assembled with multiple high-cost discrete ICs on a PCB board, we have designed a new integrated circuit (IC) chip. Since all the functions are integrated on to a single-chip it can achieve low cost and control the high-voltage output pulse with variable amplitudes as well. It can also digitally control the rising and falling times of an output high voltage pulse by using programmable RC time control of the output buffer. The proposed circuit has been designed and simulatedd in a 180[nm] Bipolar-CMOS-DMOS (BCD) technology using HSPICE and Cadence Virtuoso Tools. The proposed single-chip pulse generation circuit is suitable for use in industrial printer heads requiring a variable high voltage driving capability.

A Study of SFFS for Office Type using Three-dimensional Printing Process (3DP 공정을 이용한 오피스용 임의형상 제작시스템 에 관한 연구 (SFFS))

  • 이원희;김동수;이택민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1128-1131
    • /
    • 2004
  • SFF(solid freeform fabrication) is another name of RP(rapid prototyping). The SFFS for office type wishes to develop system that can produce small object such as hand phone, cup, accessory etc. with high speed, and also intend suitable system in office environment by compact design, and buy easily by inexpensive price. As can manufacture high speed in existent SFF process technology, representative process that have competitive power in price is 3DP (three dimensional printing) technology. The 3DP technology is way to have general two dimensional printing technology and prints to three dimension, is technology that make three-dimensional solid freeform that want binder doing jetting selectively on powder through printer head. We designed and manufactured SFFS for office based on 3DP process technology design and manufactured, and composed head system so that use 3 printer heads at the same time to improve the fabrication speed of system. We used printer head of INCJET company and cartridge used HP45 series model who can buy easily in general city. And we directly fabricated three dimensional solid freeform using developed SFFS for office type.

  • PDF

Scaled Down Experiment of Retention Basin with a Rotatable Bucket Using 3D Printer (3D 프린터를 이용한 회전 버킷이 부착된 저류조의 모형 실험)

  • Park, Seong-Jik;Lee, Chang-Gu;Lee, Jemyung;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.49-55
    • /
    • 2017
  • Recently climate change and urbananization have been increased surface runoff, resulting in flooding. Retention basins have been constructed to control urban flooding by reducing peak flow rate. Recently, the retention basin plays a role in controlling combined sewer overflows (CSOs) as well as urban flooding. In this study, the retention basin with a rotatable bucket was suggested and scale down experiments was performed for the optimum design of the retention basin. Scaled down model was produced using a 3D printer after it was designed as law of similarity. Two times for operating a rotary bucket is required to sweep out the sediments deposited on the bottom of the basin. Optimized dimensions for the retention basin were width of 5 m, height of 5 m, bucket radius of 0.5 m, and bottom slope of 5.0 %. It can be concluded that the results obtained from this study can be used to design the retention basin with a rotatable bucket which does not require energy to operate.

Design of an Integrated Circuit for Controlling the Printer Head Ink Nozzle (프린터 헤드 노즐분사 제어용 집적회로설계)

  • 정승민;김정태;이문기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.798-804
    • /
    • 2003
  • In this paper, We have designed an advanced circuits for controlling the Ink Nozzle of Printer Head We can fully increase the number of nozzle by reducing the number of Input/Output PADs using the proposed new circuit. The proposed circuit is tested with only 20 nozzles to evaluate functional test using FPGA sample chip. The new circuit architecture can be estimated. Full circuit for controlling 320 nozzles was designed and simulated from ASIC full custom methodology, then the circuit was fabricated by applying 3${\mu}{\textrm}{m}$ CMOS process design rule.

A Quantitative Self Alignment Method in Incremental Printing: Coalescent Bar Alignment

  • Chun, Y.;Kim, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.106-109
    • /
    • 2003
  • The repeatability error creeps in every corner of mechanical design as mechanical design becomes diverse and complicated. Inkjet printing has inherent repeatability error problem due to its nature of seamless incremental image synthesis of partial images. Without the calibration for the repeatability error realization of high print quality or enhancement of other printing performance could be impaired. Printer designers have met this recurrent problem even before the inception of inkjet print device and contrived various solutions as their own intelectual proprietary. Also, it is a trend to perform necessary calibration without painstaking human intervention. To come up with another useful and proprietary solution has become an important ingredient in inkjet printer design. This paper presents such a solution developed at Digital Printing Division of Samsung Electronics Company.

  • PDF

High Speed Scanner Motor for High Performance Laser Printer (고성능 레이저 프린터용 고속 스캐너모터)

  • Sung, Bu-Ryun;Kim, Sung-Min;Woo, Ki-Myung;Choa, Sung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.829-836
    • /
    • 2000
  • High performance laser printer requires high speed scanning motor, which can operate up to 40,000 rpm. However, development of high speed scanning motor has been restricted due to the practical problems such as use of high speed bearing, compact circuit design and high cost. In this study, we designed a high speed scanner motor for use on laser scanning unit and discussed some design principles including the reduction method of cogging torque of the motor, development of hemispherical aerodynamic bearing, windage loss estimation, and operating circuit design to reduce noise.

  • PDF

Bond Graph/Genetic Programming Based Automated Design Methodology for Multi-Energy Domain Dynamic Systems (멀티-에너지 도메인 동적 시스템을 위한 본드 그래프/유전프로그래밍 기반의 자동설계 방법론)

  • Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.677-682
    • /
    • 2006
  • Multi-domain design is difficult because such systems tend to be complex and include a mixtures of electrical, mechanical, hydraulic, and thermal components. To design an optimal system, unified and automated procedure with efficient search technique is required. This paper introduces design method for multi-domain system to obtain design solutions automatically, combining bond graph which is domain independent modeling tool and genetic programming which is well recognized as a powerful tool for open-ended search. The suggested design methodology has been applied for design of electric fitter, electric printer drive, and and pump system as a proof of concept for this approach.

The effects of science·job competence through STEAM education based on a Fine Arts among Secondary School Students - Focused on the food design class using 3D printer - (미술교과 중심의 융합인재교육(STEAM)이 중학생의 과학·직업역량에 미치는 영향 - 3D프리터를 활용한 식품디자인수업을 중심으로 -)

  • Kim, Hyo-jung
    • Journal of Communication Design
    • /
    • v.55
    • /
    • pp.20-30
    • /
    • 2016
  • This study was to verify the effect of art-education-oriented integrated human resource education (STEAM) on scientific competence and job competence of middle school students. The theme of the program developed for this study is "food design" using a 3-D printer. The 5 mockup lectures were developed for 237 students in ninth and tenth grades of Y Middle School in Gyeonggi-do Province, and the pre-/post-results were analyzed. As a result of analyzing the competence of STEAM education before and after the program, the job competence of general, science, and food science of students was improved after the program in general. Especially among three sub-areas of scientific competence, the change in component of research shows the most significant change in test statistics. The result of test statistics of food science job competence showed the most significant change among three sub-areas: general, scientific, and food science. This program was developed for on-site to be used for a school lecture, and the program may be reformed or used for different themes.

Optimization Design of an Aluminum Tube for an OPC Drum using Taguchi's Experimental Method (다구찌 실험법을 이용한 OPC 드럼용 튜브의 최적설계 연구)

  • Kim, Chung-Kyun;Oh, Kyoung-Seok
    • Tribology and Lubricants
    • /
    • v.23 no.3
    • /
    • pp.103-108
    • /
    • 2007
  • In this paper, the optimized design and strength analysis have been presented based on the finite element and Taguchi's experimental methods. The stress, strain and displacement characteristics of OPC drum tubes are affected by rolling contact pressures between an OPC drum tube and a paper, design parameters of an aluminum tube and material properties. The OPC drum tubes with nine different geometrical models are analyzed for design parameters that are related to the outer diameter, the thickness, and the length of an aluminum tube for a toner cartridge. The optimized design parameters for an aluminum tube may be selected as the outer diameter of 28 mm, the thickness of 0.8 mm, and the length of 220 mm. But the currently used aluminum tube for a laser printer is fairly optimized based on the Taguchi's design analysis. The calculated FEM results showed that the affection ratio of the design parameter t, which may control the strength of an aluminum tube, is the most influential parameter among the length and an outer diameter of a tube.