• Title/Summary/Keyword: Printed Monopole

Search Result 52, Processing Time 0.016 seconds

A Study on the Small Loop Antenna with a Parasitic Loop Structure for Multiband Mobile Phone Application (기생 루프 구조를 이용한 휴대 단말기용 다중 대역 초소형 루프 안테나에 관한 연구)

  • Lee, Sang-Heun;Kim, Ki-Joon;Jung, Jong-Ho;Yoon, Young-Joong;Kim, Byoung-Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.706-713
    • /
    • 2010
  • In this paper, the small loop antenna with a parasitic loop structure for penta-band mobile phone application is proposed. This antenna is composed of a feed monopole, a radiating loop antenna with a parasitic loop structure and an additional radiating element. The antenna is printed on the very thin flexible substrate to mount on the dielectric carrier with a volume of 40 mm$\times$11 mm$\times$3 mm. The bandwidth of the proposed antenna is 402 MHz(773~1,175 MHz) for low band and 583 MHz(1,622~2,205 MHz) for high band. As a result, the proposed antenna covers the five bands of GSM850, GSM900, DCS1800, PCS1,900 and WCDMA for a 3:1 VSWR. Moreover, the radiation pattern, gain and efficiency are appropriate for mobile handset. Therefore, this antenna is suitable for small sized multi-band mobile handset applications.

Design and Implementation of Dual Wideband Dipole Type Antenna for the Reception of S-DMB and 2.4/5 GHz WLAN Signals (S-DMB와 2.4/5 GHz WLAN 신호 수신을 위한 이중 광대역 다이폴형 안테나의 설계 및 구현)

  • Kim, Sung-Min;Yang, Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1021-1029
    • /
    • 2006
  • In this paper, we designed and implemented a dual wideband dipole type antenna for the reception of S-DMB (Satellite Digital Multimedia Broadcasting) and 2.4/5 GHz WLAN(Wireless Local Area Network) signals. The proposed antenna based on conventional monopole type dual band antenna was implemented as planar wideband dipole type antenna with the volume of $8{\times}33.8{\times}1.68mm^3$. The proposed antenna is printed type on FR4 substrate of 1.6 mm thick and composed of a dipole type antenna for low frequency band and two symmetric structured resonance elements for high frequency band. We confirmed antenna area with dense surface current for each frequency band with simulation. By varying the length of the antenna area with dense surface current, we could vary resonance frequency of each frequency band separately. Impedance bandwidths$(VSWR{\leq}2)$ are 362 MHz(14.23 %) for 2 GHz band and 1188 MHz(22.13, %) for 5 GHz band which show wideband characteristic. Measured maximum gains were 4.33 dBi for 2 GHz band and 5.48 dBi for 5 GHz band which showed improved performance. And the implemented antenna has a good omni-directional radiation pattern characteristic.