• Title/Summary/Keyword: Printed Materials

Search Result 839, Processing Time 0.032 seconds

Fabrication of Roll-Printed Organic Thin-Film Transistors using Patterned Polymer Stamp

  • Jo, Jeong-Dai;Yu, Jong-Su;Kim, Dong-Soo;Kim, Kwang-Young;Lee, Eung-Sug
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.243-246
    • /
    • 2008
  • Roll-printed organic thin-film transistors (OTFTs) were fabricated by gravure or flexography printing using patterned PDMS stamp with various channel lengths, silver pastes, coated polyvinylphenol dielectric, and jetted bis(triisopropyl-silylethynyl) pentacene semiconductor on plastic substrates. The roll-printed OTFT parameters were obtained: fieldeffect mobility of $0.1\;cm^2/Vs$, an on/off current ratio of $10^4$ and a subthreshold slope of 2.53 V/decade.

  • PDF

Wear of 3D printed and CAD/CAM milled interim resin materials after chewing simulation

  • Myagmar, Gerelmaa;Lee, Jae-Hyun;Ahn, Jin-Soo;Yeo, In-Sung Luke;Yoon, Hyung-In;Han, Jung-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.3
    • /
    • pp.144-151
    • /
    • 2021
  • PURPOSE. The purpose of this in vitro study was to investigate the wear resistance and surface roughness of three interim resin materials, which were subjected to chewing simulation. MATERIALS AND METHODS. Three interim resin materials were evaluated: (1) three-dimensional (3D) printed (digital light processing type), (2) computer-aided design and computer-aided manufacturing (CAD/CAM) milled, and (3) conventional polymethyl methacrylate interim resin materials. A total of 48 substrate specimens were prepared. The specimens were divided into two subgroups and subjected to 30,000 or 60,000 cycles of chewing simulation (n = 8). The wear volume loss and surface roughness of the materials were compared. Statistical analysis was performed using one-way analysis of variance and Tukey's post-hoc test (α=.05). RESULTS. The mean ± standard deviation values of wear volume loss (in mm3) against the metal abrader after 60,000 cycles were 0.10 ± 0.01 for the 3D printed resin, 0.21 ± 0.02 for the milled resin, and 0.44 ± 0.01 for the conventional resin. Statistically significant differences among volume losses were found in the order of 3D printed, milled, and conventional interim materials (P<.001). After 60,000 cycles of simulated chewing, the mean surface roughness (Ra; ㎛) values for 3D printed, milled, and conventional materials were 0.59 ± 0.06, 1.27 ± 0.49, and 1.64 ± 0.44, respectively. A significant difference was found in the Ra value between 3D printed and conventional materials (P=.01). CONCLUSION. The interim restorative materials for additive and subtractive manufacturing digital technologies exhibited less wear volume loss than the conventional interim resin. The 3D printed interim restorative material showed a smoother surface than the conventional interim material after simulated chewing.

Fabrication of Screen Printed Organic Thin-Film Transistors

  • Yu, Jong-Su;Jo, Jeong-Dai;Kim, Do-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.629-632
    • /
    • 2008
  • Printed organic thin-film transistors (OTFTs) were used in the fabrication of a screen- printed gate, source and drain electrodes on flexible plastic substrates using silver pastes, a coated polyvinylphenol dielectrics, and jetted bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene) organic semiconductor. The OTFTs printed using screen printing and soluble processes made it was possible to fabricate a printed OTFT with a channel length as small as $13\;{\mu}m$ on plastic substrates; this was not possible using previous traditional printing techniques.

  • PDF

Scalable and Viable Paths to Printed (or Flexible) Electronics

  • Go, Byeong-Cheon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.3.2-3.2
    • /
    • 2009
  • Development of printed electronics, which is occasionally referred to as 'flexible' or 'polymer' electronics, has attracted considerable world wide attention in recent years. Printed (or flexible) electronics is currently expected to represent a new form of electronics and open up wide ranging applications in displays, electron devices for medical use, sensors, and other areas. This presentation aims to provide a strategy for scalable and viable paths to accomplish flexible, printable, large area circuits displaying high performance. Novel approaches evolving from system on package (SoP) to system on flex (SoF) technology will allow the integration of heterogeneous materials platforms into a system which is needed to enhance the functionality of the system. The talk also includes speculations about areas on which future advances in printed electronics could have a substantial impact along with a brief introduction of the Korea Printed Electronics Association (KoPEA).

  • PDF

Functional Inks for Printed Electronics

  • Choi, Young-Min;Jeong, Sun-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.63.1-63.1
    • /
    • 2012
  • In recent years, the functional inks for printed electronics that can be combined with a variety of printing techniques have attracted increasingly significant interest for use in low cost, large area, high performance integrated electronics and microelectronics. In particular, the development of solution-processable conductor, semiconductor and insulator materials is of great importance as such materials have decisive impacts on the electrical performance of various electronic devices, and, therefore, need to meet various requirements including solution processability, high electrical performance, and environmental stability. Semiconductor inks such as IGO, CIGS are synthesized by chemical solution method and microwave reaction method for TFT and solar cell application. Fine circuit pattern with high conductivity, which is valuable for flexible electrode for PCB and TSP devices, can be printed with highly concentrated and stabilized conductor inks such as silver and copper. Solution processed insulator such as polyimide derivatives can be use to all printed TFT device. Our research results of functional inks for printed electronics provide a recent trends and issues on this area.

  • PDF

Fabrication of Sub-$10{\mu}m$ Screen Printed Organic Thin-Film Transistors on Paper

  • Jo, Jeong-Dai;Yu, Jong-Su;Yun, Seong-Man;Kim, Dong-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.896-898
    • /
    • 2009
  • The printed electrodes of organic thin-film transistors (OTFTs) were fabricated by screen printing using nanoparticle silver pastes. The screen printed OTFT corresponds to channel lengths between 7.6 to 82.6 ${\mu}m$ (designed L=10 to 80 ${\mu}m$) on the $150{\times}150mm^2$ paper. The channel length deviations for 40 to 80 ${\mu}m$ patterns were less than 5 %. However, the channel lengths for 10 to 30 ${\mu}m$ patterns were increased by 20 %. The screen printed bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene) OTFTs obtained had a field-effect mobility as large as 0.08 (${\pm}0.02$) $cm^2$/Vs, an on/off current ratio of $10^5$ and a subthreshold slope of 1.95 V/decade.

  • PDF

Measurement and Compensation of Synchronization Error in Offset Printing Process (오프셋 인쇄에서의 동기화 오차 정밀 계측 및 보정 연구)

  • Kang, Dongwoo;Kim, Hyunchang;Lee, Eonseok;Choi, Young-Man;Jo, Jeongdai;Lee, Taik-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.6
    • /
    • pp.477-481
    • /
    • 2014
  • Flexible electronics have been to the fore because it is believed that flexibility can add incredible value such as light weight and mobility into the existing electronic devices and create new markets of large-area and low-cost electronics such as wearable eletronics in near future. Offset printing processes are regarded as major candidates for manufacturing the flexible electronics because they can provide the patterning resolution of micron-size effectively in large-area. In view of mechanics, the most important viewpoint in offset printing is how to achieve the synchronized movement of two contact surfaces in order to prevent slip between two contact surfaces and distortion of the blanket surface during ink transfer so that the high-resolution and good-overlay patterns can be printed. In this paper, a novel low-cost measurement method of the synchronization error using the motor control output signals is proposed and the compensation method is presented to minimize the synchronization error.

Advances in Materials for Printed Transistors

  • Ong, Beng S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1065-1066
    • /
    • 2008
  • Printed thin-film transistors (TFTs) have received profound interests as an alternative to their silicon counterparts for use in fabricating next-Gen microelectronics by virtue of projected low manufacturing cost and certain salient features (e.g., thin and lightweight characteristics, structural flexibility, etc.) that printed TFTs bring to device architecture. The economic advantages stem from engaging low-cost printing techniques (e.g., screen printing, gravure, flexography, etc.) for deposition and patterning in place of traditionally costly high-vacuum, high-temperature photolithographic processes. To render printing TFTs possible, solution processable materials are necessary.

  • PDF

A Study on the Management of Printed Music in University Libraries (대학도서관에서의 악보자료 관리에 관한 연구 - 대전.충남지역을 중심으로 -)

  • Hahn, Kyung-Shin
    • Journal of Korean Library and Information Science Society
    • /
    • v.41 no.3
    • /
    • pp.205-224
    • /
    • 2010
  • The purpose of this study aims to present the base for the rational management of printed music as an important primary source of music materials. In this study, therefore, the selection and acquisition, organization, user services for the management of printed music are investigated. Then the present situation for management of printed music of university libraries in Daejeon and Chungnam are surveyed. Finally, the special issues to be considered in the management of printed music are presented.

  • PDF