• 제목/요약/키워드: Principle Component Analysis(PCA)

검색결과 182건 처리시간 0.022초

주성분 분석과 서포트 백터 머신을 이용한 효과적인 얼굴 검출 시스템 (Effective Face Detection Using Principle Component Analysis and Support Vector Machine)

  • 강병두;권오화;성치영;전재덕;엄재성;김종호;이재원;김상균
    • 한국멀티미디어학회논문지
    • /
    • 제9권11호
    • /
    • pp.1435-1444
    • /
    • 2006
  • 본 논문은 얼굴 영상에서 추출된 특징 값들을 주성분 분석(Principle Component Analysis; 이하 PCA)을 이용하여 재해석하고, 서포트 벡터 머신(Support Vector Machine; 이하 SVM)을 이용한 이진 분류를 통하여 효과적이면서 실시간으로 얼굴을 검출할 수 있는 방법론을 제안한다. 얼굴과 얼굴이 아닌 영상들로 학습데이터를 구성하여, 이 영상들로부터 Haar-like 특징값들을 추출한다. 추출된 다량의 특징 값들 중에 얼굴과 얼굴이 아닌 영역에 대하여 판별 능력이 우수한 특징값들은 PCA를 이용하여 재해석되고 유용한 특징들을 선별한다. 선별된 특징들을 SVM의 입력 차원으로 사용하여 최종 분류기를 학습 및 구성한다. 제안하는 분류기는 학습데이터 집단의 구성에 크게 영향을 받지 않고, 소량의 학습데이터만으로도 90.1%의 만족할만한 얼굴 검출률을 보여주며, $320{\times}240$ 크기의 영상에 대하여 실시간 얼굴 검출에 사용 가능한 초당 8프레임의 처리속도를 보여주었다.

  • PDF

주성분 분석을 이용한 고객 공정의 불량률 예측 모형 개발 (Development of Prediction Model using PCA for the Failure Rate at the Client's Manufacturing Process)

  • 장윤희;손지욱;이동혁;오창석;이득중;장중순
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권2호
    • /
    • pp.98-103
    • /
    • 2016
  • Purpose: The purpose of this paper is to get a meaningful information for improving manufacturing quality of the products before they are produced in client's manufacturing process. Methods: A variety of data mining techniques have been being used for wide range of industries from process data in manufacturing factories for quality improvement. One application of those is to get meaningful information from process data in manufacturing factories for quality improvement. In this paper, the failure rate at client's manufacturing process is predicted by using the parameters of the characteristics of the product based on PCA (Principle Component Analysis) and regression analysis. Results: Through a case study, we proposed the predicting methodology and regression model. The proposed model is verified through comparing the failure rates of actual data and the estimated value. Conclusion: This study can provide the guidance for predicting the failure rate on the manufacturing process. And the manufacturers can prevent the defects by confirming the factor which affects the failure rate.

센서 네트워크를 위한 지능형 데이터 유효화 기법의 개발 (Development of Intelligent Data Validation Scheme for Sensor Network)

  • 육의수;김성호
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.481-486
    • /
    • 2007
  • Wireless Sensor Network(WSNs) consists of small sensor nodes with sensing, computation, and wireless communication capabilities. The large number of sensor nodes in a WSN means that there will often be some nodes which give erroneous sensor data owing to several reasons such as power shortage and transmission error. Generally, these sensor data are gathered by a sink node to monitor and diagnose the current environment. Therefore, this can make it difficult to get an effective monitoring and diagnosis. In this paper, to overcome the aforementioned problems, intelligent sensor data validation method based on PCA(Principle Component Analysis) is utilized. Furthermore, a practical implementation using embedded system is given to show the feasibility of the proposed scheme.

주성분 분석과 서포트 벡터 머신을 이용한 침입 탐지 시스템 (An Intrusion Detection System Using Principle Component Analysis and Support Vector Machines)

  • 정성윤;강병두;김상균
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.314-317
    • /
    • 2003
  • 기존의 침입탐지 시스템에서는 오용탐지모델이 널리 사용되고 있다. 이 모델은 낮은 오판율(False Alarm rates)을 가지고 있으나, 새로운 공격에 대해 전문가시스템(Expert Systems)에 의한 규칙추가를 필요로 한다. 그리고 그 규칙과 완전히 일치되는 시그너처만 공격으로 탐지하므로 변형된 공격을 탐지하지 못한다는 문제점을 가지고 있다 본 논문에서는 이러한 문제점을 보완하기 위해 주성분분석(Principle Component Analysis; 이하 PCA)과 서포트 벡터 머신(Support Vector Machines; 이하 SVM)을 이용한 침입탐지 시스템을 제안한다. 네트워크 상의 패킷은 PCA를 이용하여 결정된 주성분 공간에서 해석되고, 정상적인 흐름과 비정상적인 흐름에 대한 패킷이미지패턴으로 정규화 된다. 이러한 두 가지 클래스에 대한 SVM 분류기를 구현한다. 개발하는 침입탐지 시스템은 알려진 다양한 침입유형뿐만 아니라, 새로운 변종에 대해서도 분류기의 유연한 반응을 통하여 효과적으로 탐지할 수 있다.

  • PDF

A Human Activity Recognition System Using ICA and HMM

  • ;이지준;김태성
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.499-503
    • /
    • 2008
  • In this paper, a novel human activity recognition method is proposed which utilizes independent components of activity shape information from image sequences and Hidden Markov Model (HMM) for recognition. Activities are represented by feature vectors from Independent Component Analysis (ICA) on video images, and based on these features; recognition is achieved by trained HMMs of activities. Our recognition performance has been compared to the conventional method where Principle Component Analysis (PCA) is typically used to derive activity shape features. Our results show that superior recognition is achieved with our proposed method especially for activities (e.g., skipping) that cannot be easily recognized by the conventional method.

  • PDF

Object Recognition Using the Edge Orientation Histogram and Improved Multi-Layer Neural Network

  • Kang, Myung-A
    • International Journal of Advanced Culture Technology
    • /
    • 제6권3호
    • /
    • pp.142-150
    • /
    • 2018
  • This paper describes the algorithm that lowers the dimension, maintains the object recognition and significantly reduces the eigenspace configuration time by combining the edge orientation histogram and principle component analysis. By using the detected object region as a recognition input image, in this paper the object recognition method combined with principle component analysis and the multi-layer network which is one of the intelligent classification was suggested and its performance was evaluated. As a pre-processing algorithm of input object image, this method computes the eigenspace through principle component analysis and expresses the training images with it as a fundamental vector. Each image takes the set of weights for the fundamental vector as a feature vector and it reduces the dimension of image at the same time, and then the object recognition is performed by inputting the multi-layer neural network.

임베디드 타입의 실시간 BLDC 전동기 고장진단 시스템 구현 (Imbedded Type Real-Time Fault Diagnosis for BLDC Motors)

  • 박진일;김용민;이대종;조재훈;전명근
    • 조명전기설비학회논문지
    • /
    • 제23권4호
    • /
    • pp.62-71
    • /
    • 2009
  • 본 논문에서는 주성분 분석 기법에 의한 BLDC 전동기의 고장진단 알고리즘과 임베디드 타입의 실시간 고장진단 시스템을 구현하였다. 우선 오프라인 상태에서 제안된 고장진단 알고리즘을 검증하기 위해 BLDC 고장진단 실험장치를 구현한 후 LabVIEW 프로그램에 의해 다양한 고장 데이터를 취득하였다. 취득된 데이터는 신호특성에 맞는 전 처리과정을 수행한 후 주성분분석 기법에 의해 고장특성을 나타내는 특징을 추출하고 최종적으로 BLDC 전동기의 진단은 유클리디안 거리 유사도 방법에 의해 수행된다. 이러한 결과를 바탕으로 임베디드 타입의 실시간 BLDC 고장진단 시스템을 구현하였다. 제안된 방법은 다양한 실험을 통하여 성능을 평가하였다.

PCA에 의한 도서분류에 관한 연구( I ) (A Study on the Classification of Islands by PCA ( I ))

  • 이강우
    • 수산경영론집
    • /
    • 제14권2호
    • /
    • pp.1-14
    • /
    • 1983
  • This paper considers a classification of the 88 islands located at Kyong-nam area in Korea, using by examples of 12 components of the islands. By means of principal component analysis 2 principle components were extracted, which explained a total of 73.7% of the variance. Using an eigen variable criterion (λ>1), no further principle components were discussed. Principal component 1 and 2 explained 63.4% and 10.3% of the total variance respectively, The representation of the unrelated factor scores along the first and second principal axes produced a new information with respect to the classification of the islands. Based upon the representation, 88 islands were classified into 6 groups i. e. A, B, C, D, E, and F according to similarity of the components among them in this paper. The "Group F" belongs to a miscellaneous assortment that does not fit into the logical category. category.

  • PDF

주성분 분석을 사용한 포토모자이크 (Photomosaics Using Principal Component Analysis)

  • 전영재;오경수;조성현
    • 한국게임학회 논문지
    • /
    • 제11권1호
    • /
    • pp.139-146
    • /
    • 2011
  • 본 논문에서는 주성분 분석을 사용한 포토모자이크 생성 기법을 제안한다. 후보 이미지 집합의 주성분 분석 결과인 주성분과 계수를 사용하여 후보 이미지 검색을 보다 빠르고 정확하게 포토모자이크를 생성한다. 두 이미지를 하나의 주성분으로 투영해서 계산된 두 계수가 유사하면 두 이미지의 본래 정보 역시 유사하기 때문에, 본 논문에서 제안하는 주성분 분석을 사용하는 계수 비교 방법은 이미지의 색상 정보와 위치 정보를 동시에 비교할 수 있다. 계수 비교 방법은 모든 색상 비교 방법보다 빠르고, 평균 색상 비교 방법보다 정확하게 포토모자이크를 생성한다. 본 논문에서 제안하는 포토모자이크 알고리즘은 그래픽스 하드웨어의 가속을 받아 수행되므로 실시간에 입력 영상을 처리할 수 있다.

PCA 표상을 이용한 강인한 얼굴 표정 인식 (Robust Facial Expression Recognition using PCA Representation)

  • 신영숙
    • 인지과학
    • /
    • 제16권4호
    • /
    • pp.323-331
    • /
    • 2005
  • 본 논문은 조명 변화에 강인하며 중립 표정과 같은 표정 측정의 기준이 되는 단서 없이 다양한 내적상태 안에서 얼굴표정을 인식할 수 있는 개선된 시스템을 제안한다. 표정정보를 추출하기 위한 전처리 작업으로, 백색화(whitening) 단계가 적용되었다. 백색화 단계는 영상데이터들의 평균값이 0이며 단위분산 값으로 균일한 분포를 갖도록 하여 조명 변화에 대한 민감도를 줄인다. 백색화 단계 수행 후 제 1 주성분이 제외된 나머지 주성분들로 이루어진 PCA표상을 표정정보로 사용함으로써 중립 표정에 대한 단서 없이 얼굴표정의 특징추출을 가능하게 한다. 본 실험 결과는 또한 83개의 내적상태와 일치되는 다양한 얼굴표정들에서 임의로 선택된 표정영상들을 내적상태의 차원모델에 기반한 얼굴표정 인식을 수행함으로써 다양하고 자연스런 얼굴 표정 인식을 가능하게 하였다.

  • PDF