• Title/Summary/Keyword: Principal Direction

Search Result 388, Processing Time 0.03 seconds

Classification of Ambient Particulate Samples Using Cluster Analysis and Disjoint Principal Component Analysis (군집분석법과 분산주성분분석법을 이용한 대기분진시료의 분류)

  • 유상준;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.51-63
    • /
    • 1997
  • Total suspended particulate matters in the ambient air were analyzed for eight chemical elements (Ca, Co, Cu, Fe, Mn, Pb, Si, and Zn) using an x-ray fluorescence spectrometry (XRF) at the Kyung Hee University - Suwon Campus during 1989 to 1994. To use these data as basis for source identification study, membership of each sample was selected to represent one of the well defined sample groups. The data sets consisting of 83 objects and 8 variables were initially separated into two groups, fine (d$_{p}$<3.3 ${\mu}{\textrm}{m}$) and coarse particle groups (d$_{p}$>3.3 ${\mu}{\textrm}{m}$). A hierarchical clustering method was examined to obtain possible member of homogeneous sample classes for each of the two groups by transforming raw data and by applying various distances. A disjoint principal component analysis was then used to define homogeneous sample classes after deleting outliers. Each of five homogeneous sample classes was determined for the fine and the coarse particle group, respectively. The data were properly classified via an application of logarithmic transformation and Euclidean distance concept. After determining homogeneous classes, correlation coefficients among eight chemical variables within all the homogeneous classes for calculated and meteorological variables (temperature. relative humidity, wind speed, wind direction, and precipitation) were examined as well to intensively interpret environmental factors influencing the characteristics of each class for each group. According to our analysis, we found that each class had its own distinct seasonal pattern that was affected most sensitively by wind direction.ion.

  • PDF

Comparative Anatomy of Diffuse-Porous Woods Grown in Korea (I) -Characteristics by Simple Correlation and Principal Component Analysis- (한국산(韓國産) 산공재(散孔材)의 해부학적(解剖學的) 특성(特性)에 관한 비교연구(比較硏究)(I) -단순상관(單純相關)과 주성분(主成分) 분석(分析)에 의한 특성(特性)-)

  • Chung, Youn-Jib;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.46-53
    • /
    • 1995
  • The anatomy of Korean diffuse-porous woods, 36 families, 75 genera, 145 species, 215 specimens was described and analyzed. Sixteen wood anatomical characters, habit and phenology factors were determined by simple correlation and principal component analysis. Strong positive correlations were found between vessel element length and fiber length, ray width and ray height, simple pits of fiber wall and paratracheal parenchyma distribution. The results of principal component analysis (PCA) disclose the primitive characteristics and the direction of xylem evolution of Korean diffuse-porous woods. The xylem evolution scenario for Korean dicotyledonous woods is considered to be developed in the direction of decreasing trends of vessel frequency, vessel element length, and length/diameter(L/D) ratio of vessel element but increasing trends of vessel diameter, fiber length/vessel element length(F/V) ratio, libriform wood fibers, simple perforation, and homogeneous ray composition. Increase of vessel diameter and decrease of vessel frequency seem to be related to the improvement of conductive efficiency, and increase of the vessel element length and occurrence of scalariform perforation in vessel element may be related to enhanced of conductive safety. Also the libriform wood fibers and ray features appear to have relationship with mechanical support and nutrient metabolism, respectively.

  • PDF

Brittle Deformation History Based on the Analyses of Dikes and Faults within Sedimentary Rocks on Geoje Island, SE Korea

  • Hategekimana, Francois;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.239-255
    • /
    • 2021
  • Kinematic analyses of magmatic intrusions and faults can provide useful information on stress conditions and chronological relationships between dike emplacement and brittle deformation events. We studied structures in rocks exposed on a coastal platform in Geoje Island off the southern Korean Peninsula because of its well-developed dikes and faults. The geology of the study area includes the Cretaceous Seongpo-ri Formation, which is composed mostly of shale, sandstone, and hornfels intruded by magmatic dikes. Most of the dikes are developed along pre-existing structural features (faults and fractures), indicating that their emplacements were structurally controlled. Because dikes commonly open along the direction of the minimum principal stress, the direction of this stress can be obtained from dike geometry and orientation through the matching of piercing points on either side of a dike. In addition, the deformed dikes can give information regarding later deformation. On the basis of the kinematic analyses, we identified five deformation events in the study area, which are kinematically related to changes of the regional maximum principal stress. Results indicate that the structures in the study area have been controlled predominantly by episodes of reactivation of the NNE-trending Yangsan strike-slip fault, located to the northeast of the study area, under different stress regimes. In a wider tectonic context, the brittle deformation of the rocks of Geoje Island was probably induced by interactions among the Philippine Sea, Pacific, and Eurasian plates, including changes in subduction parameters with respect to the latter two plates over time.

Analysis of Stress Intensity Factors for Interacting Two Growing Cracks (2개의 성장 균열들의 상호작용에 관한 응력확대계수 해석)

  • 박성완
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.47-57
    • /
    • 2000
  • In this study, a fundamental approach to make clear the mechanism of the mutual interference and coalescence of stress fields in the vicinity of two crack tips on the process of their slow growth, using boundary element method. Automatic generation of quadratic discontinuous elements along both of the crack boundaries which can be defined by an arbitrary piece-wise straight geometry. The direction of the crack-extension increment is predicted by the maximum principal stress criterion, corrected to account for the discreteness of the crack extension. Along the computed direction, the crack is extended one increment. Automatic incremental crack-extension analysis with no remeshing, computation of the stress intensity factors by J-integral. Numerical stress intensity factors for two growing cracks in plane-homogeneous regions were determined.

  • PDF

유한요소법에 의한 공구인선의 응력분포에 관한 연구

  • Kim, Jeong-Du
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.1
    • /
    • pp.50-58
    • /
    • 1984
  • In the present paper are calculated and compared the stresses on the normal tools and the restricted tools which have three various rake angles by Least Square Method. The results obtained are summerized as follows. The tool displacement at rake angle .alpha. = 12 .deg. and .alpha. = 0 .deg. is positive value in the principal cutting direction and negative value in the feed direction. At rake angle .alpha. = -12 .deg. the displacement is negative value in both of directions. The principal stress of the restricted and normal tool is maximum at the tip of the tool, the shear stress is maximum after a certain distance from the tip. The result of FEM and P.E method shows that in the range of rapid decreasing of normal stress of the tool edge, the shear stress is maintaining a certain value. This is due to the friction characteristic of the chip.

  • PDF

SVM-Guided Biplot of Observations and Variables

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.6
    • /
    • pp.491-498
    • /
    • 2013
  • We consider support vector machines(SVM) to predict Y with p numerical variables $X_1$, ${\ldots}$, $X_p$. This paper aims to build a biplot of p explanatory variables, in which the first dimension indicates the direction of SVM classification and/or regression fits. We use the geometric scheme of kernel principal component analysis adapted to map n observations on the two-dimensional projection plane of which one axis is determined by a SVM model a priori.

Strength Characteristics of Decomposed Granite Soil in Cubical Triaxial Test (입방체형 삼축시험에 의한 다짐화강토의 전단강도 특성)

  • 정진섭;김찬기;박승해;김기황
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.6
    • /
    • pp.64-73
    • /
    • 1996
  • The three-dimensional strength behavior of compacted decomposed granite soil was studied using cubical triaxial tests with independent control of the three principal stresses. All specimens were loaded under conditions of principal stress direction fixed and aligned with the directions of compacted plane. For comparable test conditions, the major principal strain and volume strain to failure were smallest when the major principal stress acted perpendicular to the compacted plane. The opposite extremes were obtained when the major principal stress acted parallel to the compacted plane. In cubical triaxial tests with same b values and with ${\theta}$ values in one of three sectors of the octahedral plane, independent of the range of ${\theta}$, higher friction angles are obtained in tests with b greater than in triaxial compression tests in which b 0.0, Comparison between the results of the drained cubical triaxial tests on lksan compacted decomposed granite soil and the cross section of the Mohr-Coulomb failure surface as well as the cross section of the Mohr-Coulomb failure surface were made. Lade's isotropic failure criterion based on vertical specimens overestimates the strengths for tests performed with values of 0 between 90˚ and 1 50˚ the Mohr-Coulomb criterion generally underestimates the strengths of tests performed with values of ${\theta}$ between $0^{\circ}$ and $180^{\circ}$ except around the $120^{\circ}$.

  • PDF

A stress field approach for the shear capacity of RC beams with stirrups

  • Domenico, Dario De;Ricciardi, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.515-527
    • /
    • 2020
  • This paper presents a stress field approach for the shear capacity of stirrup-reinforced concrete beams that explicitly incorporates the contribution of principal tensile stresses in concrete. This formulation represents an extension of the variable strut inclination method adopted in the Eurocode 2. In this model, the stress fields in web concrete consist of principal compressive stresses inclined at an angle θ combined with principal tensile stresses oriented along a direction orthogonal to the former (the latter being typically neglected in other formulations). Three different failure mechanisms are identified, from which the strut inclination angle and the corresponding shear strength are determined through equilibrium principles and the static theorem of limit analysis, similar to the EC-2 approach. It is demonstrated that incorporating the contribution of principal tensile stresses of concrete slightly increases the ultimate inclination angle of the compression struts as well as the shear capacity of reinforced concrete beams. The proposed stress field approach improves the prediction of the shear strength in comparison with the Eurocode 2 model, in terms of both accuracy (mean) and precision (CoV), as demonstrated by a broad comparison with more than 200 published experimental results from the literature.

The Effect of Stress on Borehole Deformability (응력이 공내 변형률에 미치는 영향)

  • 윤건신
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.219-234
    • /
    • 1998
  • Modulus measurements in vertical boreholes under simulated horizontal in-situ stress conditions were performed on laboratory rock specimens. The experimental program was focused on the examination of modulus change with the variation of the orientation, magnitude and ratios of horizontal biaxial stresses. The experiment results show that the modulus increases when the magnitude of the horizontal stresses increases. The modulus measured in the minimum principal direction increased when the ratio between the horizontal principal stresses increased, while the modulus measured in the maximum principal direction decreased when the ratio of the horizontal principal stresses increased. These were caused by the tangential stresses that vary depending upon the magnitude of horizontal stresses, the applied pressure and the orientation of measurement. Also, the measured moduli were determined under tensile stress, compressive stress, or both stresses. Thus, the stress effect on deformation modulus should be considered, not only for the interpretation of the results of borehole deformability measurement, but also for the design of underground gas storage and pressure tunnel, and for the interpretation of tunnel monitoring.

  • PDF

Pattern and Association within Shrub Layer under Summer Green Forest in Central Korean Peninsula (중부한국의 하록림 밑 관목층 구성종의 미분포와 종간상관)

  • 오계칠
    • Journal of Plant Biology
    • /
    • v.15 no.1
    • /
    • pp.33-41
    • /
    • 1972
  • Nine shrub layer communities under two relatively well conserved natural summer green forests in the central region of Korean Peninsula were studied for the pattern of stem distribution in terms of Greig-Smith's multiple split-plot experiment and for the association between the population of the two main species in terms of Kershaw's covariance analysis respectively. Four contiguous belt transects, $4{\times}64m size with 1{\times}1m$ basic unit, were set in each shrub layer communities. Significant primary clumps with $1{\times}1m or 1{\times}2m$ dimension wer observed consistently throughout the nine study sites. The primary clumps themselves were significantly distributed either regularly or at random. The association between the two principal species of each shrub layer is highly significantly either positive or negative in $1{\times}1m or 1{\times}2m$ dimension. As the plot size increases from $1{\times}1m to 8{\times}8m$ the associational trends were changed from negative to positive direction in one forests. But the change from positive to negative direction and the consistent negative association were also observed from the other forest. All of the association trends were observed only from $1{\times}1m to 4{\times}4m$ dimension. These results are suggestive that the distributional pattern of the shrub layer species under the summer green forest is simple mosaic fashioned with $1{\times}1m or 1{\times}2m$ dimension. The rest of the principal species are located in that matrix. The simple mosaic pattern of two principal species are located in that matrix. The simple mosaic pattern of two principal species seems to be controlled by change in micro-environmental pattern. Differences between the primary random group and clumped group among sites also suggest that competition exists for light or/and soil between primary clumped groups.

  • PDF