Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)
-
- Journal of Intelligence and Information Systems
- /
- v.27 no.3
- /
- pp.175-197
- /
- 2021
Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.
Green or an environmental consciousness has been a major issue for businesses and government offices, as well as consumers, worldwide. In response to this movement, the Korean government announced, in the early 2000s, the era of "Green Growth" as a way to encourage green-related business activities. The Korean fashion industry, in various levels of involvement, presents diverse eco-friendly products as a part of the green movement. These apparel products include organic products and recycled clothing. For these companies to be successful, they need information about who are the consumers who consider green issues (e.g., environmental sustainability) as part of their personal values when making a decision for product purchase, use, and disposal. These consumers can be considered as eco-sumers. Previous studies have examined consumers' purchase intention for or with eco-friendly products. In addition, studies have examined influential factors used to identify the eco-sumers or green consumers. However, limited attention was paid to eco-sumers' disposal or recycling behavior of clothes in comparison with their green product purchases. Clothing disposal behaviors are ways that consumer can get rid of unused clothing and in clue temporarily lending the item or permanently eliminating the item by "handing down" (e.g., giving it to a younger sibling), donating, exchanging, selling, or simply throwing it away. Accordingly, examining purchasing behaviors of eco-friendly fashion items in conjunction with clothing disposal behaviors should improve understanding of a consumer's clothing consumption behavior from the environmental perspective. The purpose of this exploratory study is to provide descriptive information about Korean eco-sumers who have ecologically-favorable lifestyles and behaviors when buying and disposing of clothes. The objectives of this study are to (a) categorize Koreans on the basis of clothing disposal behaviors; (b) investigate the differences in demographics, lifestyles, and clothing consumption values among segments; and (c) compare the purchase intention of eco-friendly fashion items and influential factors among segments. A self-administered questionnaire was developed based on previous studies. The questionnaire included 10 items of clothing disposal behavior, 22 items of LOHAS (Lifestyles of Health and Sustainability) characteristics, and 19 items of consumption values, measured by five-point Likert-type scales. In addition, the purchase intention of two eco-friendly fashion items and 11 attributes of each item were measured by seven-point Likert type scales. Two polyester fleece pullovers, made from fabric created from recycled bottles with the PET identification code, were selected from one Korean brand and one US imported brand among outdoor sportswear brands. A brief description of each product with a color picture was provided in the survey. Demographic variables (i.e., gender, age, marital status, education level, income, occupation) were also included. The data were collected through a professional web survey agency during May 2009. A total of 600 final usable questionnaires were analyzed. The age of respondents ranged from 20 to 49 years old with a mean age of 34 years. Fifty percent of the respondents were males and about 58% were married, and 62% reported having earned university degrees. Principal components factor analysis with varimax rotation was used to identify the underlying dimensions of the clothing disposal behavior scale, and three factors were generated (i.e., reselling behavior, donating behavior, non-recycling behavior). To categorize the respondents on the basis of clothing disposal behaviors, k-mean cluster analysis was used, and three segments were obtained. These consumer segments were labeled as 'Resale Group', 'Donation Group', and 'Non-Recycling Group.' The classification results indicated approximately 98 percent of the original cases were correctly classified. With respect to demographic characteristics among the three segments, significant differences were found in gender, marital status, occupation, and age. LOHAS characteristics were reduced into the following five factors: self-satisfaction, family orientation, health concern, environmental concern, and voluntary service. Significant differences were found in the LOHAS factors among the three clusters. Resale Group and Donation Group showed a similar predisposition to LOHAS issues while the Non-Recycling Group presented the lowest mean scores on the LOHAS factors compared to the other segments. The Resale and Donation Groups described themselves as enjoying or being satisfied with their lives and spending spare-time with family. In addition, these two groups cared about health and organic foods, and tried to conserve energy and resources. Principal components factor analysis generated clothing consumption values into the following three factors: personal values, social value, and practical value. The ANOVA test with the factors showed differences primarily between the Resale Group and the other two groups. The Resale Group was more concerned about personal value and social value than the other segments. In contrast, the Non-Recycling Group presented the higher level of social value than did Donation Group. In a comparison of the intention to purchase eco-friendly products, the Resale Group showed the highest mean score on intent to purchase Product A. On the other hand, the Donation Group presented the highest intention to purchase for Product B among segments. In addition, the mean scores indicated that the Korean product (Product B) was more preferable for purchase than the U.S. product (Product A). Stepwise regression analysis was used to identify the influence of product attributes on the purchase intention of eco product. With respect to Product A, design, price and contribution to environmental preservation were significant to predict purchase intention for the Resale Group, while price and compatibility with my image factors were significant for the Donation Group. For the Non-Recycling Group, design, price compatibility with the factors of my image, participation to eco campaign, and contribution to environmental preservation were significant. Price appropriateness was significant for each of the three clusters. With respect to Product B, design, price and compatibility with my image factors were important, but different attributes were associated significantly with purchase intention for each of the three groups. The influence of LOHAS characteristics and clothing consumption values on intention to purchase Products A and B were also examined. The LOHAS factor of health concern and the personal value factor were significant in the relationships with the purchase intention; however, the explanatory powers were low in the three segments. Findings showed that each group as classified by clothing disposal behaviors showed differences in the attributes of a product, personal values, and the LOHAS characteristics that influenced their purchase intention of eco-friendly products. Findings would enable organizations to understand eco-friendly behavior and to design appropriate strategic decisions to appeal eco-sumers.
1. Introduction Today Internet is recognized as an important way for the transaction of products and services. According to the data surveyed by the National Statistical Office, the on-line transaction in 2007 for a year, 15.7656 trillion, shows a 17.1%(2.3060 trillion won) increase over last year, of these, the amount of B2C has been increased 12.0%(10.2258 trillion won). Like this, because the entry barrier of on-line market of Korea is low, many retailers could easily enter into the market. So the bigger its scale is, but on the other hand, the tougher its competition is. Particularly due to the Internet and innovation of IT, the existing market has been changed into the perfect competitive market(Srinivasan, Rolph & Kishore, 2002). In the early years of on-line business, they think that the main reason for success is a moderate price, they are awakened to its importance of on-line service quality with tough competition. If it's not sure whether customers can be provided with what they want, they can use the Web sites, perhaps they can trust their products that had been already bought or not, they have a doubt its viability(Parasuraman, Zeithaml & Malhotra, 2005). Customers can directly reserve and issue their air tickets irrespective of place and time at the Web sites of travel agencies or airlines, but its empirical studies about these Web sites for reserving and issuing air tickets are insufficient. Therefore this study goes on for following specific objects. First object is to measure service quality and service recovery of Web sites for reserving and issuing air tickets. Second is to look into whether above on-line service quality and on-line service recovery have an impact on overall service quality. Third is to seek for the relation with overall service quality and customer satisfaction, then this customer satisfaction and loyalty intention. 2. Theoretical Background 2.1 On-line Service Quality Barnes & Vidgen(2000; 2001a; 2001b; 2002) had invented the tool to measure Web sites' quality four times(called WebQual). The WebQual 1.0, Step one invented a measuring item for information quality based on QFD, and this had been verified by students of UK business school. The Web Qual 2.0, Step two invented for interaction quality, and had been judged by customers of on-line bookshop. The WebQual 3.0, Step three invented by consolidating the WebQual 1.0 for information quality and the WebQual2.0 for interactionquality. It includes 3-quality-dimension, information quality, interaction quality, site design, and had been assessed and confirmed by auction sites(e-bay, Amazon, QXL). Furtheron, through the former empirical studies, the authors changed sites quality into usability by judging that usability is a concept how customers interact with or perceive Web sites and It is used widely for accessing Web sites. By this process, WebQual 4.0 was invented, and is consist of 3-quality-dimension; information quality, interaction quality, usability, 22 items. However, because WebQual 4.0 is focusing on technical part, it's usable at the Website's design part, on the other hand, it's not usable at the Web site's pleasant experience part. Parasuraman, Zeithaml & Malhorta(2002; 2005) had invented the measure for measuring on-line service quality in 2002 and 2005. The study in 2002 divided on-line service quality into 5 dimensions. But these were not well-organized, so there needed to be studied again totally. So Parasuraman, Zeithaml & Malhorta(2005) re-worked out the study about on-line service quality measure base on 2002's study and invented E-S-QUAL. After they invented preliminary measure for on-line service quality, they made up a question for customers who had purchased at amazon.com and walmart.com and reassessed this measure. And they perfected an invention of E-S-QUAL consists of 4 dimensions, 22 items of efficiency, system availability, fulfillment, privacy. Efficiency measures assess to sites and usability and others, system availability measures accurate technical function of sites and others, fulfillment measures promptness of delivering products and sufficient goods and others and privacy measures the degree of protection of data about their customers and so on. 2.2 Service Recovery Service industries tend to minimize the losses by coping with service failure promptly. This responses of service providers to service failure mean service recovery(Kelly & Davis, 1994). Bitner(1990) went on his study from customers' view about service providers' behavior for customers to recognize their satisfaction/dissatisfaction at service point. According to them, to manage service failure successfully, exact recognition of service problem, an apology, sufficient description about service failure and some tangible compensation are important. Parasuraman, Zeithaml & Malhorta(2005) approached the service recovery from how to measure, rather than how to manage, and moved to on-line market not to off-line, then invented E-RecS-QUAL which is a measuring tool about on-line service recovery. 2.3 Customer Satisfaction The definition of customer satisfaction can be divided into two points of view. First, they approached customer satisfaction from outcome of comsumer. Howard & Sheth(1969) defined satisfaction as 'a cognitive condition feeling being rewarded properly or improperly for their sacrifice.' and Westbrook & Reilly(1983) also defined customer satisfaction/dissatisfaction as 'a psychological reaction to the behavior pattern of shopping and purchasing, the display condition of retail store, outcome of purchased goods and service as well as whole market.' Second, they approached customer satisfaction from process. Engel & Blackwell(1982) defined satisfaction as 'an assessment of a consistency in chosen alternative proposal and their belief they had with them.' Tse & Wilton(1988) defined customer satisfaction as 'a customers' reaction to discordance between advance expectation and ex post facto outcome.' That is, this point of view that customer satisfaction is process is the important factor that comparing and assessing process what they expect and outcome of consumer. Unlike outcome-oriented approach, process-oriented approach has many advantages. As process-oriented approach deals with customers' whole expenditure experience, it checks up main process by measuring one by one each factor which is essential role at each step. And this approach enables us to check perceptual/psychological process formed customer satisfaction. Because of these advantages, now many studies are adopting this process-oriented approach(Yi, 1995). 2.4 Loyalty Intention Loyalty has been studied by dividing into behavioral approaches, attitudinal approaches and complex approaches(Dekimpe et al., 1997). In the early years of study, they defined loyalty focusing on behavioral concept, behavioral approaches regard customer loyalty as "a tendency to purchase periodically within a certain period of time at specific retail store." But the loyalty of behavioral approaches focuses on only outcome of customer behavior, so there are someone to point the limits that customers' decision-making situation or process were neglected(Enis & Paul, 1970; Raj, 1982; Lee, 2002). So the attitudinal approaches were suggested. The attitudinal approaches consider loyalty contains all the cognitive, emotional, voluntary factors(Oliver, 1997), define the customer loyalty as "friendly behaviors for specific retail stores." However these attitudinal approaches can explain that how the customer loyalty form and change, but cannot say positively whether it is moved to real purchasing in the future or not. This is a kind of shortcoming(Oh, 1995). 3. Research Design 3.1 Research Model Based on the objects of this study, the research model derived is shows, Step 1 and Step 2 are significant, and mediation variable has a significant effect on dependent variables and so does independent variables at Step 3, too. And there needs to prove the partial mediation effect, independent variable's estimate ability at Step 3(Standardized coefficient
shows, Step 1 and Step 2 are significant, and mediation variable has a significant effect on dependent variables and so does independent variables at Step 3, too. And there needs to prove the partial mediation effect, independent variable's estimate ability at Step 3(Standardized coefficient
이메일무단수집거부
이용약관
제 1 장 총칙
제 2 장 이용계약의 체결
제 3 장 계약 당사자의 의무
제 4 장 서비스의 이용
제 5 장 계약 해지 및 이용 제한
제 6 장 손해배상 및 기타사항
Detail Search
Image Search
(β)