• 제목/요약/키워드: Principal Component Factor

검색결과 368건 처리시간 0.028초

Independent Component Biplot (독립성분 행렬도)

  • Lee, Su Jin;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • 제27권1호
    • /
    • pp.31-41
    • /
    • 2014
  • Biplot is a useful graphical method to simultaneously explore the rows and columns of a two-way data matrix. In particular, principal component factor biplot is a graphical method to describe the interrelationship among many variables in terms of a few underlying but unobservable random variables called factors. If we consider the unobservable variables (which are mutually independent and also non-Gaussian), we can apply the independent component analysis decomposing a mixture of non-Gaussian in its independent components. In this case, if we apply the principal component factor analysis, we cannot clearly describe the interrelationship among many variables. Therefore, in this study, we apply the independent component analysis of Jutten and Herault (1991) decomposing a mixture of non-Gaussian in its independent components. We suggest an independent component biplot to interpret the independent component analysis graphically.

Comparison of hydrochemical informations of groundwater obtained from two different underground storage systems

  • Lee, Jeonghoon;Kim, Jun-Mo;Chang, Ho-Wan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.110-113
    • /
    • 2002
  • Statistical- based, principal component analysis (PCA) was applied to chemical data from two underground storage systems containing LPG to assess the usefulness of such technique at the initial stage (Pyeongtaek) or middle stage (Ulsan) of hydrochemical studies. For the first case, both natural and anthropogenic contamination characterize regional groundwater. Saline water buffered by Namyang lake affects as a natural factor, whereas cement grouting influence as an artificial factor. For the second study area, contaminations due to operation of LPG caverns, such as disinfection activity and cement grouting effect, deteriorate groundwater quality. This study indicates that principal component analysis would be particularly useful for summarizing large data set for the purpose of subsurface characterization, assessing their vulnerability to contamination and protecting recharge zones.

  • PDF

A dimensional reduction method in cluster analysis for multidimensional data: principal component analysis and factor analysis comparison (다차원 데이터의 군집분석을 위한 차원축소 방법: 주성분분석 및 요인분석 비교)

  • Hong, Jun-Ho;Oh, Min-Ji;Cho, Yong-Been;Lee, Kyung-Hee;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • 제5권2호
    • /
    • pp.135-143
    • /
    • 2020
  • This paper proposes a pre-processing method and a dimensional reduction method in the analysis of shopping carts where there are many correlations between variables when dividing the types of consumers in the agri-food consumer panel data. Cluster analysis is a widely used method for dividing observational objects into several clusters in multivariate data. However, cluster analysis through dimensional reduction may be more effective when several variables are related. In this paper, the food consumption data surveyed of 1,987 households was clustered using the K-means method, and 17 variables were re-selected to divide it into the clusters. Principal component analysis and factor analysis were compared as the solution for multicollinearity problems and as the way to reduce dimensions for clustering. In this study, both principal component analysis and factor analysis reduced the dataset into two dimensions. Although the principal component analysis divided the dataset into three clusters, it did not seem that the difference among the characteristics of the cluster appeared well. However, the characteristics of the clusters in the consumption pattern were well distinguished under the factor analysis method.

Evaluation of the Geum River by Multivariate Analysis: Principal Component Analysis and Factor Analysis (다변량분석법을 이용한 금강 유역의 수질오염특성 연구)

  • Kim, Mi-Ah;Lee, Jae-kwan;Zoh, Kyung-Duk
    • Journal of Korean Society on Water Environment
    • /
    • 제23권1호
    • /
    • pp.161-168
    • /
    • 2007
  • The main aim of this work is focus on the Geum river water quality evaluation of pollution data obtained by monitoring measurement during the period 2001-2005. The complex data matrix 19 (entire monitoring stations)*13 (parameters), 60 (month)*13 (parameters) and 20 (season)*13 (parameters) were treated with different multivariate techniques such as factor analysis/principal component analysis (FA/PCA). FA/PCA identified two factor (19*13) classified pollutant Loading factor (BOD, COD, pH, Cond, T-N, T-P, $NH_3$-N, $NO_3$-N, $PO_4$-P, Chl-a), seasonal factor (water temp, SS) and three Factor (60*13, 20*13) classified pollutant Loading factor (BOD, COD, Cond, T-N, T-P, $NH_3$-N, $NO_3$-N, $PO_4$-P), seasonal factor (water temp, SS) and metabolic factor (Chl-a, pH). Loadings of pollutant factor is potent influence main factor in the Geum river which is explained by loadings of pollutant factor at whole sampling stations (71.16%), month (52.75%) and season (56.57%) of main water quality stations. Result of this study is that pollutant loading factor is affected at Gongju 1, 2, Buyeo 1, 2, Gangkyeong, Yeongi stations by entire stations and entire month (Gongju 1, Cheongwon stations), April, May, July and August (buyeo 1) by month. Also the pollutant Loading factor is season gives an influence in winter (Gongju 1, buyeo 1) from main sampling stations, but Cheongwon characteristic is non-seasonal influenced. This study presents necessity and usefulness of multivariate statistic techniques for evaluation and interpretation of large complex data set with a view to get better information data effective management of water sources.

International Inflation Synchronization and Implications

  • CHON, SORA
    • KDI Journal of Economic Policy
    • /
    • 제42권2호
    • /
    • pp.57-84
    • /
    • 2020
  • This study analyzes global inflation synchronization and derives policy implications for the Korean economy. Unlike previous studies that assume a single global inflation factor, this study investigates if inflation in Korea can be explained further by other global inflation factors. Our principal component analysis provides three principal components for global inflation that are linked to the Korea inflation rate - the first component is closely related to OECD inflation, and the second and third components reflect China's inflation. This study empirically demonstrates via in-sample fitting and out-of-sample forecasting that the three principal components of global inflation play a significant role in explaining and predicting Korean inflation in the short-term, while their role is limited in the mid-term. Domestic macroeconomic variables are found to be more important for the mid-term movements of the Korean inflation rate. The empirical results here suggest that the Bank of Korea should focus more on domestic economic conditions than on global inflation when implementing monetary policy because global factors are likely to be already reflected in domestic macro-variables in the mid-term.

Assessment of Water Quality using Multivariate Statistical Techniques: A Case Study of the Nakdong River Basin, Korea

  • Park, Seongmook;Kazama, Futaba;Lee, Shunhwa
    • Environmental Engineering Research
    • /
    • 제19권3호
    • /
    • pp.197-203
    • /
    • 2014
  • This study estimated spatial and seasonal variation of water quality to understand characteristics of Nakdong river basin, Korea. All together 11 parameters (discharge, water temperature, dissolved oxygen, 5-day biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, electrical conductivity, total nitrogen, total phosphorus, and total organic carbon) at 22 different sites for the period of 2003-2011 were analyzed using multivariate statistical techniques (cluster analysis, principal component analysis and factor analysis). Hierarchical cluster analysis grouped whole river basin into three zones, i.e., relatively less polluted (LP), medium polluted (MP) and highly polluted (HP) based on similarity of water quality characteristics. The results of factor analysis/principal component analysis explained up to 83.0%, 81.7% and 82.7% of total variance in water quality data of LP, MP, and HP zones, respectively. The rotated components of PCA obtained from factor analysis indicate that the parameters responsible for water quality variations were mainly related to discharge and total pollution loads (non-point pollution source) in LP, MP and HP areas; organic and nutrient pollution in LP and HP zones; and temperature, DO and TN in LP zone. This study demonstrates the usefulness of multivariate statistical techniques for analysis and interpretation of multi-parameter, multi-location and multi-year data sets.

Varietal Classification by Multivariate Analysis on Quantitative Traits in Pecan

  • Shin, Dong-Young;Nou, Ill-Sup
    • Plant Resources
    • /
    • 제2권2호
    • /
    • pp.75-80
    • /
    • 1999
  • Twenty two varieties of pecan including wild types were classified based on 6 characters measured by principal component analysis score distance. The results are summarized as fellow. Twenty two varieties were classified into 5 groups based in PCA score distance. Five groups were distinctly characterized by many morphological characters. Total variation could be explained by 51%, 95%, 99% with first, third and fifth principal components respectively. Varimax rotation of the factor loading of the first factors indicated that the first component was highly loaded with leaf characters, the second component with fruit characters, but fruit length was negative loaded. The second, the third and the fourths groups of cultivars had very close genetic parentage similarity.

  • PDF

Shrinkage Structure of Ridge Partial Least Squares Regression

  • Kim, Jong-Duk
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권2호
    • /
    • pp.327-344
    • /
    • 2007
  • Ridge partial least squares regression (RPLS) is a regression method which can be obtained by combining ridge regression and partial least squares regression and is intended to provide better predictive ability and less sensitive to overfitting. In this paper, explicit expressions for the shrinkage factor of RPLS are developed. The structure of the shrinkage factor is explored and compared with those of other biased regression methods, such as ridge regression, principal component regression, ridge principal component regression, and partial least squares regression using a near infrared data set.

  • PDF

Assessment of water quality variations under non-rainy and rainy conditions by principal component analysis techniques in Lake Doam watershed, Korea

  • Bhattrai, Bal Dev;Kwak, Sungjin;Heo, Woomyung
    • Journal of Ecology and Environment
    • /
    • 제38권2호
    • /
    • pp.145-156
    • /
    • 2015
  • This study was based on water quality data of the Lake Doam watershed, monitored from 2010 to 2013 at eight different sites with multiple physiochemical parameters. The dataset was divided into two sub-datasets, namely, non-rainy and rainy. Principal component analysis (PCA) and factor analysis (FA) techniques were applied to evaluate seasonal correlations of water quality parameters and extract the most significant parameters influencing stream water quality. The first five principal components identified by PCA techniques explained greater than 80% of the total variance for both datasets. PCA and FA results indicated that total nitrogen, nitrate nitrogen, total phosphorus, and dissolved inorganic phosphorus were the most significant parameters under the non-rainy condition. This indicates that organic and inorganic pollutants loads in the streams can be related to discharges from point sources (domestic discharges) and non-point sources (agriculture, forest) of pollution. During the rainy period, turbidity, suspended solids, nitrate nitrogen, and dissolved inorganic phosphorus were identified as the most significant parameters. Physical parameters, suspended solids, and turbidity, are related to soil erosion and runoff from the basin. Organic and inorganic pollutants during the rainy period can be linked to decayed matters, manure, and inorganic fertilizers used in farming. Thus, the results of this study suggest that principal component analysis techniques are useful for analysis and interpretation of data and identification of pollution factors, which are valuable for understanding seasonal variations in water quality for effective management.

Comparison of Dietary Externalization in Korea and Japan -by Principal Component Analysis- (식생활 외부화에 관한 한일 비교 연구 -주성분 분석을 이용하여-)

  • Choi Hyun-Sook
    • Journal of the East Asian Society of Dietary Life
    • /
    • 제16권1호
    • /
    • pp.23-28
    • /
    • 2006
  • The purpose of this paper was to clarify the actual conditions of the 'Dietary externalization' mainly by using the economic and nutrition-related data, accompanied by the economic development in Korea and Japan. 'Modernization of food style' and other modernization have taken place, among which 'Dietary externalization' in particular has recently drawn interest. At the time this paper clarified with econometric analysis whether there are differences between the two countries in term of the modernization of food style and dietary externalization trend. The trends of Dietary externalization of both Korea and Japan were studied using Principal Component Analysis method. The food subgroup were investigated based on the annual report on the household income and expenditure survey of Korea and the annual report on the family income and expenditure survey of Japan. The statistical data from both country were analyzed by SAS program. The results are as follows; 1. In Korea, the ratio of carbohydrates in the total calorie intake is quite high and animal protein is rather low compared to those in Japan. 2. Traditional food such as grains and vegetables are consumed much more in Korea than in Japan. 3. The Principal Component 1, 2 were extracted in both countries during the whole analysis period, which suggested the 'Dietary externalization' 4. Principal Component 1 has a positive factor loaded in all food items including meals outside the home and process food. In other words, it is apparent that the 'Dietary externalization' tread in Korea has a simple pattern suggesting that all externalization related items are on the rise. 5. Principal component 1, 2 which indicated the dietary externalization, were detected in Japan.

  • PDF