• Title/Summary/Keyword: Prime ideal

Search Result 285, Processing Time 0.022 seconds

ON THE COHOMOLOGICAL DIMENSION OF FINITELY GENERATED MODULES

  • Bahmanpour, Kamal;Samani, Masoud Seidali
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.311-317
    • /
    • 2018
  • Let (R, m) be a commutative Noetherian local ring and I be an ideal of R. In this paper it is shown that if cd(I, R) = t > 0 and the R-module $Hom_R(R/I,H^t_I(R))$ is finitely generated, then $$t={\sup}\{{\dim}{\widehat{\hat{R}_p}}/Q:p{\in}V(I{\hat{R}}),\;Q{\in}mAss{_{\widehat{\hat{R}_p}}}{\widehat{\hat{R}_p}}\;and\;p{\widehat{\hat{R}_p}}=Rad(I{\wideha{\hat{R}_p}}=Q)\}$$. Moreover, some other results concerning the cohomological dimension of ideals with respect to the rings extension $R{\subset}R[X]$ will be included.

Development of Large Sized AM-OLED

  • Lee, Baek-Woon;Kunjal, Parikh;HUh, Jong-Moo;Chu, Chang-Woong;Chung, Kyu-Ha
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.17-18
    • /
    • 2006
  • Flat Panel Displays (FPDs) have made a revolution in the display industry. TFT-LCD (Thin Film Transistor Liquid Crystal Display) has been the main player of FPD for last two decades. As the industry continuously develops the technology for better performance with lower cost is constantly demanded where several post LCD technologies are being developed. One of the prime candidates of post LCD technology is AMOLED (Active Matrix Organic Light Emitting Diode) that is considered to be an ideal FPD due to its extraordinary display performance and potentially low cost display structure. This technology has been accepted to small size display applications, such as cellular phone, PDA and PMP, etc. In this paper it is discussed that how this technology can be extended to large size display applications, such as TV. The technical issues and solutions of TFT backplane and color patterning of OLED materials are discussed and proposed

  • PDF

New Family of p-ary Sequences with Optimal Correlation Property and Large Linear Span (최적의 상관 특성과 큰 선형 복잡도를 갖는 새로운 p-진 수열군)

  • ;;;Tor Helleseth
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9C
    • /
    • pp.835-842
    • /
    • 2003
  • For an odd prime p and integer n, m and k such that n=(2m+1)ㆍk, a new family of p-ary sequences of period p$^{n}$ -1 with optimal correlation property is constructed using the p-ary Helleseth-Gong sequences with ideal autocorrelation, where the size of the sequence family is p$^{n}$ . That is, the maximum nontrivial correlation value R$_{max}$ of all pairs of distinct sequences in the family does not exceed p$^{n}$ 2/ +1, which means the optimal correlation property in terms of Welch's lower bound. It is also derived that the linear span of the sequences in the family is (m+2)ㆍn except for the m-sequence in the family.

t-SPLITTING SETS S OF AN INTEGRAL DOMAIN D SUCH THAT DS IS A FACTORIAL DOMAIN

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.455-462
    • /
    • 2013
  • Let D be an integral domain, S be a saturated multi-plicative subset of D such that $D_S$ is a factorial domain, $\{X_{\alpha}\}$ be a nonempty set of indeterminates, and $D[\{X_{\alpha}\}]$ be the polynomial ring over D. We show that S is a splitting (resp., almost splitting, t-splitting) set in D if and only if every nonzero prime t-ideal of D disjoint from S is principal (resp., contains a primary element, is t-invertible). We use this result to show that $D{\backslash}\{0\}$ is a splitting (resp., almost splitting, t-splitting) set in $D[\{X_{\alpha}\}]$ if and only if D is a GCD-domain (resp., UMT-domain with $Cl(D[\{X_{\alpha}\}]$ torsion UMT-domain).

REMARK ON AVERAGE OF CLASS NUMBERS OF FUNCTION FIELDS

  • Jung, Hwanyup
    • Korean Journal of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.365-374
    • /
    • 2013
  • Let $k=\mathbb{F}_q(T)$ be a rational function field over the finite field $\mathbb{F}_q$, where q is a power of an odd prime number, and $\mathbb{A}=\mathbb{F}_q[T]$. Let ${\gamma}$ be a generator of $\mathbb{F}^*_q$. Let $\mathcal{H}_n$ be the subset of $\mathbb{A}$ consisting of monic square-free polynomials of degree n. In this paper we obtain an asymptotic formula for the mean value of $L(1,{\chi}_{\gamma}{\small{D}})$ and calculate the average value of the ideal class number $h_{\gamma}\small{D}$ when the average is taken over $D{\in}\mathcal{H}_{2g+2}$.

ALGORITHMS FOR FINDING THE MINIMAL POLYNOMIALS AND INVERSES OF RESULTANT MATRICES

  • Gao, Shu-Ping;Liu, San-Yang
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.251-263
    • /
    • 2004
  • In this paper, algorithms for computing the minimal polynomial and the common minimal polynomial of resultant matrices over any field are presented by means of the approach for the Grobner basis of the ideal in the polynomial ring, respectively, and two algorithms for finding the inverses of such matrices are also presented. Finally, an algorithm for the inverse of partitioned matrix with resultant blocks over any field is given, which can be realized by CoCoA 4.0, an algebraic system over the field of rational numbers or the field of residue classes of modulo prime number. We get examples showing the effectiveness of the algorithms.

ON ALMOST PSEUDO-VALUATION DOMAINS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.185-193
    • /
    • 2010
  • Let D be an integral domain, and let ${\bar{D}}$ be the integral closure of D. We show that if D is an almost pseudo-valuation domain (APVD), then D is a quasi-$Pr{\ddot{u}}fer$ domain if and only if D=P is a quasi-$Pr{\ddot{u}}fer$ domain for each prime ideal P of D, if and only if ${\bar{D}}$ is a valuation domain. We also show that D(X), the Nagata ring of D, is a locally APVD if and only if D is a locally APVD and ${\bar{D}}$ is a $Pr{\ddot{u}}fer$ domain.

Normal Pairs of Going-down Rings

  • Dobbs, David Earl;Shapiro, Jay Allen
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Let (R, T) be a normal pair of commutative rings (i.e., R ${\subseteq}$ T is a unita extension of commutative rings, not necessarily integral domains, such that S is integrally closed in T for each ring S such that R ${\subseteq}$ S ${\subseteq}$ T) such that the total quotient ring of R is a von Neumann regular ring. Let P be one of the following ring-theoretic properties: going-down ring, extensionally going-down (EGD) ring, locally divided ring. Then R has P if and only if T has P. An example shows that the "if" part of the assertion fails if P is taken to be the "divided domain" property.

COMPACTNESS OF A SUBSPACE OF THE ZARISKI TOPOLOGY ON SPEC(D)

  • Chang, Gyu-Whan
    • Honam Mathematical Journal
    • /
    • v.33 no.3
    • /
    • pp.419-424
    • /
    • 2011
  • Let D be an integral domain, Spec(D) the set of prime ideals of D, and X a subspace of the Zariski topology on Spec(D). We show that X is compact if and only if given any ideal I of D with $I{\nsubseteq}P$ for all $P{\in}X$, there exists a finitely generated idea $J{\subseteq}I$ such that $J{\nsubseteq}P$ for all $P{\in}X$. We also prove that if D = ${\cap}_{P{\in}X}D_P$ and if * is the star-operation on D induced by X, then X is compact if and only if * $_f$-Max(D) ${\subseteq}$X. As a corollary, we have that t-Max(D) is compact and that ${\mathcal{P}}$(D) = {P${\in}$ Spec(D)$|$P is minimal over (a : b) for some a, b${\in}$D} is compact if and only if t-Max(D) ${\subseteq}\;{\mathcal{P}}$(D).

MATRIX OPERATORS ON FUNCTION-VALUED FUNCTION SPACES

  • Ong, Sing-Cheong;Rakbud, Jitti;Wootijirattikal, Titarii
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.375-415
    • /
    • 2019
  • We study spaces of continuous-function-valued functions that have the property that composition with evaluation functionals induce $weak^*$ to norm continuous maps to ${\ell}^p$ space ($p{\in}(1,\;{\infty})$). Versions of $H{\ddot{o}}lder^{\prime}s$ inequality and Riesz representation theorem are proved to hold on these spaces. We prove a version of Dixmier's theorem for spaces of function-valued matrix operators on these spaces, and an analogue of the trace formula for operators on Hilbert spaces. When the function space is taken to be the complex field, the spaces are just the ${\ell}^p$ spaces and the well-known classical theorems follow from our results.