• Title/Summary/Keyword: Primary velocity

Search Result 358, Processing Time 0.022 seconds

Flow Analysis in an Entrained Flow Combustor (분류층 연소기내의 유동해석)

  • 양희천;박상규;정동화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1308-1316
    • /
    • 2001
  • This paper described a numerical investigation performed to understand better the effects of flow parameters in an entrained flow combustor on the flow characteristics. The computational model was based on the gas phase Eulerian equations of mass, momentum and energy. The code was formulated with RNG $k-\varepsilon$ model for turbulent flow. The calculation parameters were the ratio of primary and secondary jet velocity and the height difference between primary and secondary jet As the secondary jet velocity increased, the upper recirculation 3one of the primary jet was strengthened. It was found that as the primary jet velocity increased, there was a critical jet Velocity at which the size of upper and lower recirculation zone was reversed.

  • PDF

Tracing Dark Matter Halo Mass Using Central Velocity Dispersion of Galaxies

  • Seo, Gangil;Sohn, Jubee;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.73.4-73.4
    • /
    • 2019
  • Most of the galaxy mass is known to be occupied by dark matter. However, it is difficult to directly measure the mass and distribution of dark matter in a galaxy. Recently, the velocity dispersion of the stellar population in a galaxy's center has been suggested as a possible probe of the mass of the dark matter halo. In this study, we test and verify this hypothesis using the kinematics of the satellite galaxies of isolated galaxies. We use the Friends-of-Friends (FoF)algorithm to build a catalog of primary galaxies and their satellite galaxies from the Sloan Digital Sky Survey (SDSS) DR 12. We calculate the dynamical mass of the primary galaxies from the velocity dispersion of their satellite galaxies. We then investigate the correlation between the dynamical mass and the central velocity dispersion of the primary galaxies. The stellar velocity dispersion of the central host galaxies has a strong linear correlation with the velocity dispersion of their satellite galaxies. Also, the stellar velocity dispersion of the central galaxy is strongly correlated with the dynamical mass of the galaxy, which can be described as a power law. The results of this study show that the central velocity dispersion of the primary galaxies is a good proxy for tracing the mass of dark matter halo.

  • PDF

Flow Analysis in a Entrained Flow Combustor (분류층 연소기내의 유동해석)

  • 양희천;김중현
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.30-36
    • /
    • 2000
  • A numerical study was conducted to investigate the effects of flow parameters in a entrained flow combustor on the flow characteristics. The computational model was based on the gas phase Eulerian equations of mass, momentum and energy. The code was formulated with RNG k-$\varepsilon$ model for turbulent flow. The calculation parameters were the magnitude of primary and secondary jet velocity and the height difference between primary and secondary jet. As the secondary jet velocity increased, the upper recirculation zone of the primary jet was strengthened. It was found that as the primary jet velocity increased, there was a critical jet velocity at which the size of upper and lower recirculation zone was changed.

  • PDF

A Study of Two Phase Flow Control in a Combustion Chamber (연소실내의 2상유동 제어에 관한 연구)

  • 박상규;김정훈;임종환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.637-643
    • /
    • 2001
  • Two-phase flow in a combustion chamber is experimentally analyzed according to the five different conditions in the Reynolds numbers of $1.02{\times}10^4$. As the height difference between the primary and secondary jets increases, the secondary has a little less effect on the primary one in the case on the same height difference, the primary jet is affects as the velocity of th secondary on increase. The primary-jet flow field cause the particle concentration since is controlled by the velocity of secondary jet, the height difference, and the angle of primary jet in the test section.

  • PDF

Temporally developing behavior of an evolving jet diffusion flame (전개확산제트화염의 시간 발달 거동)

  • Park, Jeong;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.486-493
    • /
    • 1997
  • Experimental investigations on the comparison of developments between transient jets and evolving jet diffusion flames have been made in initial injection period. To achieve this experiment, an ignition technique using a residual flame as the ignition source is devised. High speed Schlieren visualizations, and measurements including jet tip penetration velocities and jet widths of the primary vortex are employed to examine the developing processes for several flow conditions. It is seen that the developing behaviors in the presence of flame are greatly different from those in transient jet, and thus the flow characteristics in the transient part are also modified. The discernible differences are shown to consist of the delay of the rollup of the primary vortex, the faster spreading after the rollup due to exothermic expansion, and the survival of only a primary vortex. The growth of primary vortex in the transient jet is properly explained through an impulsively started laminar vortex prior to the interaction. It is also found that the jet tip penetration velocity varies with elapsed time and an increase in Res gives rise to a higher tip penetration velocity.

A Numerical Analysis on the Characteristics of Spray by Swirl Injector in Gas Turbine Combustor (가스터빈연소기에서 스월 인젝터의 분무특성에 관한 연구)

  • 이성혁;유홍선;이인섭;홍성국
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.30-39
    • /
    • 2000
  • The present paper deals with the numerical simulation for the spray characteristics with swirling turbulent flows and dilution flows from swirl injectors in a simplified can type of gas turbine combustor. The main objective is to investigate the characteristics of swirling turbulent flows with dilution flows and to provide the qualitative results for the spray characteristics such as the droplet distribution and Sauter Mean Diameter(SMD). The gas-phase equations based on Eulerian approach were discretized by Finite Volume Method, together with SIMPLE algorithm and the Reynolds -Stress-Model. The liquid-phase equations based on Lagrangian method were used to predict the droplet behavior. The results of preliminary test are generally in good agreement with experimental data, and show that the anisotropy exists in the primary zone due to swirl velocity and injected air from primary injector, and then gradually decays due to turbulent mixing and consequently near-isotropy occurs in the region between primary and dilution zones. For the spray characteristics, it is indicated that the swirling flows of primary jet region increase the droplet atomization. In addition, it is showed that the swirling flows at the inlet region lead the air-fuel mixture to be distributed near the igniter and can significantly affect the spray behavior in the primary jet region.

  • PDF

A Development of Environmental-friendly Burner with High Injection Velocity by Multi-staged Fuel-injection (환경친화형 연료분할-고속분사식 버너 개발)

  • Choo, Jae-Min;Ko, Young-Ki;Kim, Jong-Woo;Kim, Cheol-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.148-155
    • /
    • 2005
  • In this study, Development of 300,000kcal/hr high velocity Injection burner with fuel multi-stage was performed using experiments. The characteristics of NOx emission in multi fuel/air staged combustor have been experimentally studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is largest access air combustion and the secondary flame is complete combustion zone, where most of fuel bums. Experiments were performed on an industrial scale in a laboratory furnace and Liquefied Natural Gas(LNG) was used as primary and secondary fuels. Comparison of outlet NOx and outlet Temperature under various air rate and primary/ secondary fuel ratio was performed. The test demonstrated that NOx emission con be reduced by 70% in accordance with operating conditions.

  • PDF

A Study of Flow Control in a Combustion Chamber (연소실내의 유동제어에 관한 연구)

  • 김정훈
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.86-92
    • /
    • 2000
  • Two-phase flow in a combustion chamber is experimentally analyzed according to the five different conditions in the Reynolds number of $1.02{\times} 10^4$ As the height difference between the primary and secondary jets increases the secondary has a little effect on the primary. In the case of the same height difference the primary jet is affected as the velocity of secondary increases. The primary-jet flow field causes the particle concentration since the particle stagnation phenomena appear in the recirculation zone. The particle concentration is controlled by the velocity of secondary jet the height difference and the angle of primary jet in the test section.

  • PDF

COUETTE FLOW OF TWO IMMISCIBLE LIQUIDS BETWEEN TWO PARALLEL POROUS PLATES IN A ROTATING CHANNEL

  • Rani, Ch. Baby
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.57-68
    • /
    • 2015
  • When a straight channel formed by two parallel porous plates, through which two immiscible liquids occupying different heights are flowing a secondary motion is set up. The motion is caused by moving the upper plate with a uniform velocity about an axis perpendicular to the plates. The solutions are exact solutions. Here we discuss the effect of suction parameter and the position of interface on the flow phenomena in case of Couette flow. The velocity distributions for the primary and secondary flows have been discussed and presented graphically. The skin-friction amplitude at the upper and lower plates has been discussed for various physical parameters.

Active control of vibration of cantilever beams using PZT actuators (PZT actuator를 이용한 외팔보의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.247-252
    • /
    • 2008
  • This paper presents an active vibration control of cantilever beams under disturbances by a primary force. A direct velocity feedback control using a pair of PZT actuator and a velocity sensor is considered. Variation of the stability and performance with the locations of the sensor/actuator pair is investigated. It is found that the maximum gain varies with the locations of the sensor/actuator pair significantly. The maximum gain shows a symmetric distribution along the beam length with respect to the center point, although the boundary condition of the beam is unsymmetric. The control performance is affected by the location of the primary force as well as the location of the sensor/actuator pair. The active control system can more effectively reduce the vibration when the primary force is located close to the fixed boundary.

  • PDF