• Title/Summary/Keyword: Primary electronic display device

Search Result 4, Processing Time 0.018 seconds

A Study on Design and Implementation of the Tesla Coil using Semiconductor Device (반도체 소자를 이용한 테슬라 코일의 설계 및 제작)

  • Kim, Young-Sun;Kim, Dong-Jin;Lee, Ki-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1571-1576
    • /
    • 2016
  • A Tesla coil is an electrical resonant transformer circuit invented by Nikola Tesla in 1891. It is used to produce high-voltage, low-current, high frequency alternating-current electricity. Tesla coil can generate a long streamer with several million volts of electricity as a high voltage device. It is basically consists of a voltage transformer, high voltage capacitor, spark gap, primary coil, secondary coil and toroid. It is difficult to appear in the output size of the streamer is controlled by the spark gap. The general decision method of the length of streamer is to display the electric output in accordance with the design specifications in initial development plan. Design specifications and the electric output is determined by the application of facilities. In this paper the spark gap is replaced with periodic switching semiconductor device to control output voltage easily in order to apply overvoltage protective circuit due to a secondary coil and a performance test. In these days, their main use is for entertainment and educational displays of the museum, although small coils are still used as leak detectors for high vacuum systems.

Research Trends for Improvement of NBIS Instability in Amorphous In-Ga-ZnO Based Thin-Film Transistors (비정질 인듐-갈륨-아연 산화물 기반 박막 트랜지스터의 NBIS 불안정성 개선을 위한 연구동향)

  • Yoon, Geonju;Park, Jinsu;Kim, Jaemin;Cho, Jaehyun;Bae, Sangwoo;Kim, Jinseok;Kim, Hyun-Hoo;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.371-375
    • /
    • 2019
  • Developing a thin-film transistor with characteristics such as a large area, high mobility, and high reliability are key elements required for the next generation on displays. In this paper, we have investigated the research trends related to improving the reliability of oxide-semiconductor-based thin-film transistors, which are the primary focus of study in the field of optical displays. It has been reported that thermal treatment in a high-pressure oxygen atmosphere reduces the threshold voltage shift from -7.1 V to -1.9 V under NBIS. Additionally, a device with a $SiO_2/Si_3N_4$ dual-structure has a lower threshold voltage (-0.82 V) under NBIS than a single-gate-insulator-based device (-11.6 V). The dual channel structure with different oxygen partial pressures was also confirmed to have a stable threshold voltage under NBIS. These can be considered for further study to improve the NBIS problem.

The Acceptance Testing of 5 Mega Pixels Primary Electronic Display Devices and the Study of Quality Control Guideline Suitable for Domestic Circumstance (5 Mega 화소 진단용 전자표시장치 인수검사 및 국내 실정에 적합한 정도관리 가이드라인 연구)

  • Jung, Hai-Jo;Kim, Hee-Joung;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.98-106
    • /
    • 2007
  • In June 2005, Yonsei University Medical Center, Severance Hospital upgraded a full-PACS system by adding twenty (5 mega pixels) Totoku ME511L flat panel LCD display devices for diagnostic interpretation purposes. Here we report upon the quantitative (or visual) acceptance testing of the twenty Totoku ME511L display devices for reflection, luminance response, luminance spatial dependency, resolution, noise, veiling glare, and display chromaticity based on AAPM TG 18 report. The tools used in the tests included a telescopic photometer, which was used as a colorimeter, illuminance meter, light sources for reflection assessment, light-blocking devices, and digital TG18 test patterns. For selected 8 flat panel displays, mean diffuse reflection coefficient ($R_d$) was $0.019{\pm}0.02sr^{-1}$. In the luminance response test, luminance ratio (LR), maximum luminance difference ($L_{max}$), and deviation of contrast response were $550{\pm}100,\;2.0{\pm}1.9%\;and\;5.8{\pm}1.8%$, respectively. In the luminance uniformity test, maximum luminance deviation was $14.3{\pm}5.5%$ for the 10% luminance of the TG18-UNL10 test pattern. In the resolution test with luminance measurement method, percent luminance (${\Dalta}L$) at the center was $0.94{\pm}0.64%$. In all cases of noise testing, rectangular target In every square in the three quadrants was visible and all 15 targets except the smallest one in the every corner pattern and the center pattern. The glare ratio (GR) was $12,346{\pm}1,995$. The color uniformity, (u',v'), was $0.0025{\pm}0.0008$. Also, the research results of qualify control guideline of primary disply devices suitable for domestic circumstance are presented All test results are in-line with the criteria recommended by AAPM TG18 report and are thus fully acceptable for diagnostic image interpretation. As a result, the acceptance testing schedule described provides not only an acceptance standard but also guidelines for quality control, optimized viewing conditions, and a means for determining the upgrading time of LCD display devices for diagnostic interpretation.

  • PDF

Effects of Neutral Particle Beam on Nano-Crystalline Silicon Thin Film Deposited by Using Neutral Beam Assisted Chemical Vapor Deposition at Room Temperature

  • Lee, Dong-Hyeok;Jang, Jin-Nyoung;So, Hyun-Wook;Yoo, Suk-Jae;Lee, Bon-Ju;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.254-255
    • /
    • 2012
  • Interest in nano-crystalline silicon (nc-Si) thin films has been growing because of their favorable processing conditions for certain electronic devices. In particular, there has been an increase in the use of nc-Si thin films in photovoltaics for large solar cell panels and in thin film transistors for large flat panel displays. One of the most important material properties for these device applications is the macroscopic charge-carrier mobility. Hydrogenated amorphous silicon (a-Si:H) or nc-Si is a basic material in thin film transistors (TFTs). However, a-Si:H based devices have low carrier mobility and bias instability due to their metastable properties. The large number of trap sites and incomplete hydrogen passivation of a-Si:H film produce limited carrier transport. The basic electrical properties, including the carrier mobility and stability, of nc-Si TFTs might be superior to those of a-Si:H thin film. However, typical nc-Si thin films tend to have mobilities similar to a-Si films, although changes in the processing conditions can enhance the mobility. In polycrystalline silicon (poly-Si) thin films, the performance of the devices is strongly influenced by the boundaries between neighboring crystalline grains. These grain boundaries limit the conductance of macroscopic regions comprised of multiple grains. In much of the work on poly-Si thin films, it was shown that the performance of TFTs was largely determined by the number and location of the grain boundaries within the channel. Hence, efforts were made to reduce the total number of grain boundaries by increasing the average grain size. However, even a small number of grain boundaries can significantly reduce the macroscopic charge carrier mobility. The nano-crystalline or polymorphous-Si development for TFT and solar cells have been employed to compensate for disadvantage inherent to a-Si and micro-crystalline silicon (${\mu}$-Si). Recently, a novel process for deposition of nano-crystralline silicon (nc-Si) thin films at room temperature was developed using neutral beam assisted chemical vapor deposition (NBaCVD) with a neutral particle beam (NPB) source, which controls the energy of incident neutral particles in the range of 1~300 eV in order to enhance the atomic activation and crystalline of thin films at room temperature. In previous our experiments, we verified favorable properties of nc-Si thin films for certain electronic devices. During the formation of the nc-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. The more resent work on nc-Si thin film transistors (TFT) was done. We identified the performance of nc-Si TFT active channeal layers. The dependence of the performance of nc-Si TFT on the primary process parameters is explored. Raman, FT-IR and transmission electron microscope (TEM) were used to study the microstructures and the crystalline volume fraction of nc-Si films. The electric properties were investigated on Cr/SiO2/nc-Si metal-oxide-semiconductor (MOS) capacitors.

  • PDF