• 제목/요약/키워드: Primary afferent

검색결과 40건 처리시간 0.019초

Conduction Block of the Primary Afferent Fibers by Topically Applied Allyl Isotheocyanate

  • Shin, Hong-Kee;Kim, Kee-Soon
    • The Korean Journal of Physiology
    • /
    • 제28권2호
    • /
    • pp.123-132
    • /
    • 1994
  • The present study was undertaken to elucidate the desensitization of cutaneous receptors and the conduction block of the afferent nerves induced by direct application of allyl isotheocyanate (mustard oil) to the receptive field (RF) or onto the afferent nerve, respectively. Dorsal horn cell responses to mechanical stimulations of RF were completely suppressed when mustard oil was applied to either the afferent nerve or the whole area of RF. C-fiber responses of dorsal horn cells were more susceptive to mustard oil than A-fiber activities. This was confirmed by the experiment in which the compound action potentials recorded from rat tibial nerve before and after topical application of mustard oil were compared. The higher the concentration of mustard oil and the longer the application time, the more powerful desensitization or conduction block was induced. From the results of the present study, it is suggested that the desensitization of the afferent fiber and sensory receptors induced by mustard oil results mainly from the conduction block of C-fiber in the primary afferent nerve.

  • PDF

The VR1-Positive Primary Afferent-Mediated Expression of pERK in the Lumbosacral Neurons in Response to Mechanical and Chemical Stimulation of the Urinary Bladder in Rats

  • Yoo, Chan-Jong;Hwang, Se-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • 제42권6호
    • /
    • pp.462-469
    • /
    • 2007
  • Objective : This study characterized the neurons in the lumbosacral cord that express phospho ERK (pERK) after distension or irritation of the bladder, and their relation to the vanilloid receptor 1 (VR1) positive primary afferents. Methods : Mechanical distension and chemical irritation of the bladder were induced by intravesical injection of the saline and mustard oil, respectively. Spinal neurons expressing pERK and the primary afferent fibers were characterized using multiple immunofluorescence for neurokinin 1 (NK1), neuronal nitric oxide synthetase (nNOS) and VR1. Results : Neurons in lamina I, medial dorsal horn (MDH), dorsal gray commissure (DGC) and sacral parasympathetic nucleus (SPN) were immunoreactive for pERK after either mechanical or chemical stimulation. The majority of pERK positive cells were positive for NK1 in lamina I and SPN, but not in the DGC. Most of pERK positive cells are not stained for nNOS except in a small population of the cells in the SPN and DGC. Contacts between perikarya and dendrites of pERK-positive cells and terminals of primary afferents expressing VR1 were identified in lamina I. lateral collateral path (LCP) and SPN. Conclusion : In this study, the lumbosacral neurons activated by mechanical and chemical stimulation of the urinary bladder were identified with expression of the pERK, and also provided the evidence that VR1-positive primary afferents may mediate the activation of these neurons.

Interhemispheric Modulation on Afferent Sensory Transmission to the Ventral Posterior Medial Thalamus by Contralateral Primary Somatosensory Cortex

  • Jung, Sung-Cherl;Choi, In-Sun;Cho, Jin-Hwa;Kim, Ji-Hyun;Bae, Yong-Chul;Lee, Maan-Gee;Shin, Hyung-Cheul;Choi, Byung-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권3호
    • /
    • pp.129-132
    • /
    • 2004
  • Single unit responses of the ventral posterior medial (VPM) thalamic neurons to stimulation were monitored in anesthetized rats during activation of contralateral primary somatosensory (SI) cortex by GABA antagonist. The temporal changes of afferent sensory transmission were quantitatively analyzed by poststimulus time histogram (PSTH). Mainly, afferent sensory transmission to VPM thalamus was facilitated (15 neurons of total 23) by GABA antagonist (bicuculline) applied to contralateral cortex, while 7 neurons were suppressed. However, when ipsilateral cortex was inactivated by GABA agonist, musimol, there was significant suppression of afferent sensory transmission of VPM thalamus. This suppressed responsiveness by ipsilateral musimol was not affected by bicuculline applied to contralateral cortex. These results suggest that afferent transmission to VPM thalamus may be subjected to the interhemispheric modulation via ipsilateral cortex during inactivation of GABAergic neurons in contralateral SI cortex.

Mechanical Hyperalgesia Induced by Blocking Calcium-activated Potassium Channels on Capsaicin-sensitive Afferent Fiber

  • Lee, Kyung-Hee;Shin, Hong-Kee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권5호
    • /
    • pp.215-219
    • /
    • 2007
  • Small and large conductance $Ca^{2+}$-activated $K^+(SK_{Ca}\;and\;BK_{Ca})$ channels are implicated in the modulation of neuronal excitability. We investigated how changes in peripheral $K_{Ca}$ channel activity affect mechanical sensitivity as well as the afferent fiber type responsible for $K_{Ca}$ channel-induced mechanical sensitivity. Blockade of $SK_{Ca}$ and $BK_{Ca}$ channels induced a sustained decrease of mechanical threshold which was significantly attenuated by topical application of capsaicin onto afferent fiber and intraplantar injection of 1-ethyl-2-benzimidazolinone. NS1619 selectively attenuated the decrease of mechanical threshold induced by charybdotoxin, but not by apamin. Spontaneous flinching and paw thickness were not significantly different after $K_{Ca}$ channel blockade. These results suggest that mechanical sensitivity can be modulated by $K_{Ca}$ channels on capsaicin-sensitive afferent fibers.

Changes of Afferent Transmission to the SI Cortex by Transient Co-Stimulation of Receptive Field Center and Outside in Anesthetized Rats

  • Yang, Yu-Mi;Lim, Sa-Bina;Won, Chung-Kil;Shin, Hyung-Cheul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권1호
    • /
    • pp.27-32
    • /
    • 2001
  • We have characterized the aftereffects of impulse activities on the transmission of afferent sensory to the primary somatosensory (SI) cortex of the anesthetized rats (n=22). Following conditioning stimulation (CS, 10 sec, either 5 Hz or 200 Hz) to the receptive field (RF), quantitative determination of the changes of afferent sensory transmission was done by generating post-stimulus time histogram of unit response to the testing stimulation (TS, at 0.5 Hz) to the RF center (RFC) for 60 min. In one group of experiments, CS was delivered to the RF center (RFC). In another group of experiments, CSs were simultaneously given to both RFC and RF outside (RFO, either forepaw or hindpaw). CS of 5 Hz to RFC exerted irreversible facilitation of sensory transmissions evoked by TS. Simultaneous CSs of 5 Hz to RFC and hindpaw RFO exerted reversible suppression of afferent transmission. However, CSs of 5 Hz to RFC and forepaw RFO did not significantly altered afferent sensory transmission to SI cortex neurons. CS of 200 Hz to RFC exerted irreversible suppression of sensory transmissions up to 60 min of experimental period. Simultaneous CSs of 200 Hz to RFC and RFO did not significantly altered afferent sensory transmission to SI cortex neurons. The profiles of CS-induced modulation of afferent sensory transmission were significantly different between two CS conditions. Thus, this study suggests that activity-dependent modulation of afferent transmission from a RF center to the SI cortex may be significantly altered when remote body part was simultaneously activated.

  • PDF

전침(電鍼)이 amyloid-β에 의한 구심성 체감각 신경정보전달 변화에 미치는 영향 (Effect of electro-acupuncture ST36 on altered transmission of afferent somatosensory information caused by amyloid-β)

  • 이현종;김창환;이윤호
    • Journal of Acupuncture Research
    • /
    • 제20권4호
    • /
    • pp.145-156
    • /
    • 2003
  • Objective : This study is to investigate the effect of electro-acupuncture ST36 on altered transmission of afferent somatosensory information caused by amyloid-${\beta}$(A-${\beta}$) that caused Alzheimer's disease. Methods : The effects of topical application of A-${\beta}$, A-${\beta}$ with ST36, aggregated A-${\beta}$(aA-${\beta}$), aA-${\beta}$ with ST36 and ST36 on the afferent sensory transmission to the neurons in the primary somatosensory(SI) cortex was observed in anesthetized rats. Quantitative determination of the effects of A-${\beta}$, A-${\beta}$ with ST36, aA-${\beta}$, aA-${\beta}$ with ST36 and ST36 was made by generating poststimulus time histogram of evoked response of individual cortical neuron by electrical stimulation of the receptive located in peripheral area(forepaw) Results : The results obtained in present study were summerized as follow : 1. Application of physiological concentrative 0.5 nM A-${\beta}$ caused afferent sensory transmission of SI cortex facilitated. 0.5 nM A-${\beta}$ with ST36 exerted much stronger effects than 0.5 nM A-${\beta}$ alone. 2. Application of $10{\mu}M$ A-${\beta}$ caused afferent sensory transmission of SI cortex unchangeable. But $10{\mu}M$ A-${\beta}$ with ST36 is facilitated at 30 min of post-drug period 3. Application of $10{\mu}M$ aA-${\beta}$ caused afferent sensory transmission of SI cortex diminished. $10{\mu}M$ aA-${\beta}$ with ST36 is diminished after 15min of post-drug period but is facilitated after 75min.

  • PDF

Peripheral Nerve Injury Alters Excitatory and Inhibitory Synaptic Transmission in Rat Spinal Cord Substantia Gelatinosa

  • Youn, Dong-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권3호
    • /
    • pp.143-147
    • /
    • 2005
  • Following peripheral nerve injury, excessive nociceptive inputs result in diverse physiological alterations in the spinal cord substantia gelatinosa (SG), lamina II of the dorsal horn. Here, I report the alterations of excitatory or inhibitory transmission in the SG of a rat model for neuropathic pain ('spared nerve injury'). Results from whole-cell recordings of SG neurons show that the number of distinct primary afferent fibers, identified by graded intensity of stimulation, is increased at 2 weeks after spared nerve injury. In addition, short-term depression, recognized by paired-pulse ratio of excitatory postsynaptic currents, is significantly increased, indicating the increase of glutamate release probability at primary afferent terminals. The peripheral nerve injury also increases the amplitude, but not the frequency, of spontaneous inhibitory postsynaptic currents. These data support the hypothesis that peripheral nerve injury modifies spinal pain conduction and modulation systems to develop neuropathic pain.

Allopregnanolone suppresses mechanical allodynia and internalization of neurokinin-1 receptors at the spinal dorsal horn in a rat postoperative pain model

  • Fujita, Masahide;Fukuda, Taeko;Sato, Yasuhiro;Takasusuki, Toshifumi;Tanaka, Makoto
    • The Korean Journal of Pain
    • /
    • 제31권1호
    • /
    • pp.10-15
    • /
    • 2018
  • Background: To identify a new strategy for postoperative pain management, we investigated the analgesic effects of allopregnanolone (Allo) in an incisional pain model, and also assessed its effects on the activities of the primary afferent fibers at the dorsal horn. Methods: In experiment 1, 45 rats were assigned to Control, Allo small-dose (0.16 mg/kg), and Allo large-dose (1.6 mg/kg) groups (n = 15 in each). The weight bearing and mechanical withdrawal thresholds of the hind limb were measured before and at 2, 24, 48, and 168 h after Brennan's surgery. In experiment 2, 16 rats were assigned to Control and Allo (0.16 mg/kg) groups (n = 8 in each). The degree of spontaneous pain was measured using the grimace scale after the surgery. Activities of the primary afferent fibers in the spinal cord (L6) were evaluated using immunohistochemical staining. Results: In experiment 1, the withdrawal threshold of the Allo small-dose group was significantly higher than that of the Control group at 2 h after surgery. Intergroup differences in weight bearing were not significant. In experiment 2, intergroup differences in the grimace scale scores were not significant. Substance P release in the Allo (0.16 mg/kg) group was significantly lower than that in the Control group. Conclusions: Systemic administration of Allo inhibited mechanical allodynia and activities of the primary afferent fibers at the dorsal horn in a rat postoperative pain model. Allo was proposed as a candidate for postoperative pain management.

족삼리(足三里)의 전침자극(電鍼刺戟)이 흰쥐의 중추신경계(中樞神經系)에서 Interleukin-6 의 활성(活性)에 미치는 영향(影響) -구심성(求心性) 체감각(體感覺) 정보전달(情報傳達)을 중심(中心)으로- (Differential Modulation of ST36 Stimulation on Interleukin-6-Induced Changes of Afferent Somatosensory Transmissionto the SI Cortex of Rats)

  • 이혜정;신형철;진수희;손양선;윤동학;임사비나
    • Journal of Acupuncture Research
    • /
    • 제17권4호
    • /
    • pp.41-50
    • /
    • 2000
  • Objectives : Acupuncture is expected to have somewhat like the efficacy parallel increasing activity of immune system in Western modem medicine. There, already, are many animal researches on activating effect of acupuncture for the immune system in peripheral organs. So, we carried out this experiment to see whether acupuncture has controlling effect on interleukin-6(IL-6) activity in rat's brain. Methods and Results : We had topical application of IL-6(1U=lpg, $10{\mu}l$) on brain of rat. It reduced afferent sensory transmission to the primary somatosensory(SI) cortex from periphery. Whereas, electrical stimulation(ES, 2Hz, 1.5V, 15min) of ST36(足三里) with application of IL-6 prominently activated afferent sensory transmission. ES of non-acupoint(proximal tail) with IL-6 showed suppression of afferent transmission. ES of ST36 without IL-6 application also exerted facilitation of afferent transmission to the SI cortex. Conclusions : Electoacupuncture(EA) on ST36 has noticeable influences on modulating activation of IL-6 in central nervous system, which do major role in immune system.

  • PDF

Facilitation of Afferent Sensory Transmission in the Cuneate Nucleus of Rat during Locomotor Movement

  • Shin, Hyung-Cheul;Park, Hyoung-Jin;Jin, Byung-Kwan;Chapin, John K.
    • The Korean Journal of Physiology
    • /
    • 제28권1호
    • /
    • pp.99-103
    • /
    • 1994
  • Single neuronal activities were recorded in the cuneate nucleus of awake rats during rest and running behavior. Movement-induced changes in somatic sensory transmission were tested by generating post-stimulus time histograms of these neurons' responses to stimulation through eleetrodes chronically implanted under the skin of the forepaw, during control resting behavior and during two standardized speeds of locomotor movement: slow (1.0 steps/s), fast (2.0 steps/s). The magnitudes of firing during these responses were measured and normalized as percentage increases over background firing. The averaged evoked unit responses were facilitated by $+59.3{\pm}12.5%\;and\;+25.6{\pm}5.4%$ (SEM) as compared with resting behavior, during slow and fast movement respectively. This is to be compared with the movement-induced sensory suppressions observed previously in the ventrobasal thalamus $(-31.0%{\pm}1.9%)$ and in the primary somatosensory cortex $(-71.2%{\pm}3.8%)$ of slowly running rats. These results suggest that afferent somatosensory information may be uniquely modulated at each sensory relay, such that it may be facilitated at brainstem level and then subjected to suppression at higher somatosensory nuclei during movement.

  • PDF