• Title/Summary/Keyword: Primary Zone Air Ratio

Search Result 26, Processing Time 0.024 seconds

An Experimental Study on the Combustion Characteristics of a Low NOx Burner Using Reburning Technology

  • Ahn, Koon-Young;Kim, Han-Seok;Son, Min-Gyu;Kim, Ho-Keun;Kim, Yong-Mo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.950-958
    • /
    • 2002
  • The combustion characteristics of a low NOx burner using reburning technology have been experimentally studied. The return burner usually has three distinct reaction zones which include the primary combustion zone, the reburn zone and the burnout zone by provided secondary air. NOx is mainly produced in a primary combustion zone and a certain portion of NOx can be converted to nitrogen in the rebury zone. In the burnout zone, the unburned mixtures are completely oxidated by supplying secondary air. Liquefied Petroleum Gas (LPG) was used as main and reburn fuels. The experimental parameters investigated involve the main/reburn fuel ratio, the primary/secondary air ratio, and the injection location of rebury fuel and secondary air. When the amount of return fuel reaches to the 20-30% of the total fuel used, the overall NO reduction of 50% is achieved. The secondary air is injected by two different ways including vertical and parallel injection. The injector of secondary air is located at the downstream region of furnace for a vertical-injection mode, which is also placed at the inlet primary-air injection region for a parallel-injection mode. In case of the vertical injection of the secondary air flow, the NOx formation of stoichiometric condition at a primary combustion zone is nearly independent of the rebury conditions (locations, fuel/air ratios) while the NOx emission of the fuel-lean condition is considerably influenced by the reburn conditions. In case of the parallel injection of the secondary air, the NOx emission is sensitive to the air ratio rather than the fuel ratio and the reburning process often coupled with the multiple air-staging and fuel-staging combustion processes.

An Experimental Study on the NOx Formation of Fuel Staged Combustor (연료다단 연소기의 NOx 발생특성에 관한 실험적 연구)

  • 정진도;안국영;한지웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.73-79
    • /
    • 2003
  • The characteristics of NOx emission in multi fuel/air staged combustor have been experimentally studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel burns. Experiments were performed on a semi-industrial scale (thermal input 0.233 ㎿) in a laboratory furnace and Liquefied Petroleum Gas(LPG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, primary/secondary air ratio, primary swirl intensity and secondary swirl intensity for reducing NOx emission. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

The experimental study on the NOx formation of fuel staged combustor (연료다단 연소기의 NOx 발생특성에 관한 실험적 연구)

  • Han, Ji-Woong;Ahn, Kook-Young;Kim, Han-Seok;Chung, Jin-Do
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.163-171
    • /
    • 2001
  • The characteristics of NOx emission in multi fuel/air staged combustor have been experimentally studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot Dame for the secondary combustion stage combustion zone, where most of fuel bums. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Petroleum Gas(LPG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, primary/secondary air ratio, primary swirl intensity and secondary swirl intensity for reducing NOx emission. The test demonstrated that NOx emission can be reduced by ${>}$70% in accordance with operating conditions.

  • PDF

An Experimental Study on the NOx Formation of LNG Flame in Fuel Staged Combustor (다단 연소기를 이용한 LNG 화염의 NOx 발생에 관한 실험적 연구)

  • Chung, Jin-Do;Han, Ji-Woong;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.389-394
    • /
    • 2004
  • An experimental study on the NOx formation of LNG flame in fuel staged combustor has been studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is a act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel bums. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Natural Gas(LNG) was used as a primary and secondary fuels. This study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, and primary/secondary air ratio for reducing NOx emission with two types of nozzle. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

An Experimental study on the NOx Formation of LNG Flame in Fuel Staged Combustor (다단 연소기를 이용한 LNG 화염의 NOx 발생에 관한 실험적 연구)

  • Han, Ji-Woong;Ahn, Kook-Young;Kim, Han-Seok;Chung, Jin-Do;Park, Kyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.161-166
    • /
    • 2001
  • An Experimental study on the NOx formation of LNG flame in fuel staged combustor has been studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel burns. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Natural Gas(LNG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, and primary/secondary air ratio for reducing NOx emission with two types of nozzle. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

  • PDF

An Experimental Study on NOx Characteristics in Air-Staging Burner (공기-다단 연소기에서의 NOx 발생특성)

  • Sung, Yong-Jin;Cho, Eun-Seong;Chung, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.167-171
    • /
    • 2001
  • Air-staging combustion is a relatively well-known technique to reduce NOx emission and used in combination with other techniques nowadays. However, the design variables are still selected depending upon operating circumstances. Though the fuel-rich condition of the primary combustion zone is very helpful to NOx reduction, its range is known to be restricted by the increase of carbon monoxide. However, in many cases carbon monoxide level is so low not to be the restriction at all. So we tried to expand the equivalence ratio range to the richer condition in the primary combustion zone and make the function of each burner component and its contribution to the overall NOx production clear.

  • PDF

Effect of Air Staging on NOx Reduction in Pulverized Coal Combustion (미분탄 연소에서 NOx 저감을 위한 공기다단의 효과)

  • Jang, Gil-Hong;Chang, In-Gab;Sun, Chil-Young;Chon, Mu-Hwan;Yang, Gwan-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.149-154
    • /
    • 1999
  • The influences of air staging on NOx emission and burnout of coal flames were investigated using 1MWth combustion test facility. The experiments showed that variation of overall excess air ratio led to a relatively higher NOx emission level for ${\lambda}=1.2.$ When air staging was applied to the combustion air, it was confirmed that a fuel rich primary combustion zone was established and unburned char was burened completely by mixing with the staged air supplied radially around the flame. The NOx emissions were redued by increasing the staged air flow rate, and staging air was suggested to be more than 40% of the total combustion air for the substantial NOx reduction.

  • PDF

The Low NOx Characteristics of the Primary Zone in Micro Turbine Combustor (마이크로 터빈 연소기 주연소영역의 저 NOx 생성 특성)

  • Son, M.G.;Ahn, K.Y.;Lee, H.S.;Yoon, J.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.155-160
    • /
    • 2001
  • The low NOx characteristics have been investigated to develop the combustor for micro turbine. The lean premixed combustion technology was applied to reduce the NOx emission. The test was conducted at the condition of high temperature and ambient pressure. The combustion air which has the temperature of $450\sim650K$ were supplied to the combustor through the air preheater. The temperature and emissions of NOx and CO were measured at the exit of combustor, The exit temperature and NOx were increased and CO was decreased with increasing inlet air temperature. The premixing chamber can be operated very lean condition of equivalence ratio around 0.35. The NOx was decreased with decreasing the equivalence ratio. The CO was decreased with decreasing the equivalence ratio, but the CO was increased with decreasing the equivalence ratio below 0.4. But, at the very lean condition of equivalence ratio below 0.35 both NOx and CO were increased because of the flame unstability. The NOx was decreased and CO was increased with increasing inlet air flowrate. This results can be used to determine the size of combustor. Consequently the performance of combustor shows the possibility of the application to the gas turbine system.

  • PDF

Combustion Characteristics of Model Gas Turbine Combustor -Radical Luminous Intensity and Local Equivalence Ratio Measurement- (모형 가스터빈 연소기의 연소특성 -라디칼 자발광강도와 국소당량비계측에 대하여-)

  • 최병륜;김태한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.1064-1071
    • /
    • 1994
  • There are three active radicals which become to the scale of flame diagnostics at the flame front. They are OH, CH and $C_2$ radical. For this, optical measurement system which could monitor simultaneously the luminous waves of three radicals, was constructed. These were analyzed statistically into the cross correlation, coherence and phase. Through such an statistical treatment, combustion characteristics was investigated at the primary zone of gas turbine combustor. The local equivalence ratio was predicted with the ratio of luminuous intensity between CH and $C_2$ radical. This result was matched up to the equivalence ratio calculated from gas composition within 5% error. In general, equivalence ratio was said to be 1.0 at flame front, but it could be increased up to about 1.2 depending on the degree of swirl intensity in case of changing properly the air amount of primary zone.

An Experimental Study on the Characteristics of NOx Emission in Reburning Process (재연소 과정의 NOx 발생특성에 관한 실험적 연구)

  • Park, Jong-Il;Ahn, Kook-Young;Kim, Han-Seok;Son, Min-Gyu;Kim, Yong-Mo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.698-703
    • /
    • 2000
  • The characteristics of NOx emission in reburning process have been experimentally studied. The design point of burner is creative of three distinct reaction zones; a primary flame zone that NOx producted, reburn zone to reduce the primary zone NOx and burnout zone. Liquefied Petroleum Gas(LPG) was used as main and reburn fuels. Process parameters investigated included main/reburn fuel ratio, primary/secondary air ratio, reborn fuel injector position and different designed quarl. The NOx emission characteristic of aerodynamic designed burner relied on reborn fuel ratio and was slightly affected by a reburn fuel injector position and quarl shape.

  • PDF