• Title/Summary/Keyword: Primary Zone

Search Result 430, Processing Time 0.025 seconds

Geology and Mineralization in Trapiche Cu-Mo Deposit, Apurimac State in Southeastern Peru (페루 남동부 아뿌리막주 트라피체 동-몰리브데늄 광상의 지질 및 광화작용)

  • Yang, Seok-Jun;Heo, Chul-Ho;Kim, You-Dong
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.525-536
    • /
    • 2015
  • Trapiche project corresponds to the advanced exploration stage which is thought to be a part of various porphyry copper deposits occurring in the margin of Andahuyalas-Yauri metallogenic belt. This deposit is genetically related to the monzonitic porphyry intrusion and Oligocene breccia pipe. Mineralization consists of primary sulfides such as pyrite, chalcopyrite, bornite, and molybdenite and secondary sulfides such as chalcocite, covellite and digenite. It occurs malachite, tenorite and cuprite as copper oxide. As a result of lixiviation or enrichment process, mineralization shows untypical zonation structure. Breccia and porphyry areas characterize the vertical zonation patterns. In the northern area, lixiviation zone, secondary enrichment zone, transitional zone and primary mineralized zone are distributed in northern area. In the western area of deposit, oxidation zone and mixed zones are narrowly occurred. Inferred resources of deposit is estimated to be 920 Mt @ 0.41% Cu with the cut-off grade of 0.15%.

Evaluation of the Laboratory-Scale Cometabolic Air Sparging Process : Characterization of Indigeneous Microorganism on MTBE Degradation (실험실 규모 Cometabolic Air Sparging 공정 적용 특성 평가 : 토양 내 활성미생물 별 MTBE 분해특성)

  • An, Sang-Woo;Lee, Si-Jin;Chang, Soon-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Cometabolic air sparging (CAS) is a new and innovative technology that uses air sparging principles but attempts to optimize in situ contaminant degradation by adding a growth substrate to saturated zone. CAS relies on the degradation of the primary growth substrate and cometabolic substrate transformation in the saturated zone and in the vadose zone for volatilized contaminants. In this study, we have investigated to determine MTBE degradation pattern and microbial activity variation if using propane as a primary substrate at the condition of considering air injection rate and air injection pattern. Laboratory-scale two-dimentional aquifer physical model studies were used and the experimental results were represented that the optimal conditions were as air injection rate of 1,000 mL/min and pulsed air injection pattern (15 min on/off). Over 1,000 mL/min air injection rate and continuous air injection pattern was no affected to increase DO concentration. On the other hand, Injection of propane and propane-utilizing bacteria degraded MTBE partially. And also, injection of propane- and MTBE-utilizing bacteria effectively degraded MTBE and TBA production was observed.

Primary Survey on Algal Community of Gyounggi Bay for Restoration (서해 경기만 해조군집 복원을 위한 기초생태조사)

  • Lee, Wook-Jae;Hwang, Mi-Sook;Baek, Jae-Min;Lee, Jae-Wan;Kim, Join-In
    • ALGAE
    • /
    • v.22 no.3
    • /
    • pp.201-207
    • /
    • 2007
  • For getting primary cue of restoration, the algal flora and intertidal community structure of Deokjeokdo, Yeonpyeongdo and Ganghwado were investigated for from February to November 2006. The total of 28 species, including five Chlorophytes, five Phaeophytes, 17 Rhodophytes and one sea grass were identified. The occurrence of species according to sampling site was 22 species in Deokjeokdo, seven species in Yeonpyeongdo and four species in Ganghwado. Among them Gloiopeltis furcata, Ulva pertusa and Sargassum horneri in Deokjeokdo, Scytosiphon lomentaria in Yeonpyeongdo, Enteromorpha prolifera in Ganghwado were ominants. The algal zonation of intertidal zone was figured out by Gloiopeltis furcata, Caulacanthus okamurae – Corallina pilulifera – Ulva pertusa, Ahnfeltiopsis flabelliformis, Sargassum horneri, Undaria pinnatifida in Deokjeokdo, Bangia atropurpurea – Scytosiphon lomentaria – Ahnfeltiopsis flablleiformis in Yeonpyeongdo from upper to lower zone and Enteromorpha prolifera, Enteromorpha linza – Sargassum thunbergii, Myelophycus simplex in Ganghwado from middle to lower zone. The average of biomass was measured as 80.6 g dry wt. m–2 in Deokjeokdo, 32.2 g dry wt. m–2 in Yeonpyeongdo and less than 1 g dry wt. m–2 in Ganghwado.

The Low NOx Characteristics of the Primary Zone in Micro Turbine Combustor (마이크로 터빈 연소기 주연소영역의 저 NOx 생성 특성)

  • Son, M.G.;Ahn, K.Y.;Lee, H.S.;Yoon, J.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.155-160
    • /
    • 2001
  • The low NOx characteristics have been investigated to develop the combustor for micro turbine. The lean premixed combustion technology was applied to reduce the NOx emission. The test was conducted at the condition of high temperature and ambient pressure. The combustion air which has the temperature of $450\sim650K$ were supplied to the combustor through the air preheater. The temperature and emissions of NOx and CO were measured at the exit of combustor, The exit temperature and NOx were increased and CO was decreased with increasing inlet air temperature. The premixing chamber can be operated very lean condition of equivalence ratio around 0.35. The NOx was decreased with decreasing the equivalence ratio. The CO was decreased with decreasing the equivalence ratio, but the CO was increased with decreasing the equivalence ratio below 0.4. But, at the very lean condition of equivalence ratio below 0.35 both NOx and CO were increased because of the flame unstability. The NOx was decreased and CO was increased with increasing inlet air flowrate. This results can be used to determine the size of combustor. Consequently the performance of combustor shows the possibility of the application to the gas turbine system.

  • PDF

Estimation of residual stress in welding of dissimilar metals at nuclear power plants using cascaded support vector regression

  • Koo, Young Do;Yoo, Kwae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.817-824
    • /
    • 2017
  • Residual stress is a critical element in determining the integrity of parts and the lifetime of welded structures. It is necessary to estimate the residual stress of a welding zone because residual stress is a major reason for the generation of primary water stress corrosion cracking in nuclear power plants. That is, it is necessary to estimate the distribution of the residual stress in welding of dissimilar metals under manifold welding conditions. In this study, a cascaded support vector regression (CSVR) model was presented to estimate the residual stress of a welding zone. The CSVR model was serially and consecutively structured in terms of SVR modules. Using numerical data obtained from finite element analysis by a subtractive clustering method, learning data that explained the characteristic behavior of the residual stress of a welding zone were selected to optimize the proposed model. The results suggest that the CSVR model yielded a better estimation performance when compared with a classic SVR model.

Microstructure and Hardness of Yb:YAG Disc Laser Surface Overlap Melted Cold Die Steel, STD11 (Yb:YAG 디스크 레이저로 표면 오버랩 용융된 냉간금형강, STD11의 미세조직과 경도)

  • Lee, Kwang-Hyeon;Choi, Seong-Won;Yun, Jung Gil;Oh, Myeong-Hwan;Kim, Byung Min;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.53-60
    • /
    • 2015
  • Laser surface Melting Process is getting hardening layer that has enough depth of hardening layer as well as no defects by melting surface of substrate. This study used CW(Continuous Wave) Yb:YAG and STD11. Laser beam speed, power and beam interval are fixed at 70mm/sec, 2.8kW and 800um respectively. Hardness in the weld zone are equal to 400Hv regardless of melting zone, remelting zone overlapped by next beam and HAZ. Similarly, microstructures in all weld zone consist of dendrite structure that arm spacing is $3{\sim}4{\mu}m$, matrix is ${\gamma}$(Austenite) and dendrite boundary consists of ${\gamma}$ and $M_7C_3$ of eutectic phase. This microstructure crystallizes from liquid to ${\gamma}$ of primary crystal and residual liquid forms ${\gamma}$ and $M_7C_3$ of eutectic phase by eutectic reaction at $1266^{\circ}C$. After solidification is complete, primary crystal and eutectic phase remain at room temperature without phase transformation by quenching. On the other hand, microstructures of substrate consist of ferrite, fine $M_{23}C_6$ and coarse $M_7C_3$ that have 210Hv. Microstructures in the HAZ consist of fine $M_{23}C_6$ and coarse $M_7C_3$ like substrate. But, $M_{23}C_6$ increases and matrix was changed from ferrite to bainite that has hardness above 400Hv. Partial Melted Zone is formed between melting zone and HAZ. Partial Melted Zone near the melting zone consists of ${\gamma}$, $M_7C_3$ and martensite and Partial Melted Zone near the HAZ consists of eutectic phase around ${\gamma}$ and $M_7C_3$. Hardness is maximum 557Hv in the partial melted zone.

Sensitivity Analysis on Off-Design Performance of Centrifugal Compressor Due to the Parameters of Two-zone Model and TEIS Model (두영역 모델과 직렬두요소 모델의 변수에 의한 원심 압축기 탈설계 성능의 민감도 분석)

  • Yoon, Sung-Ho;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.834-844
    • /
    • 2000
  • In this study, an off-design performance analysis procedure is developed based on Two-zone model and TEIS model. In Two-zone model, there are both primary zone and secondary zone for an isentropic core flow and an average of all non-isentropic streamtubes respectively. The level of the core flow diffusion in an impeller is calculated by using TEIS model which regards the impeller as two successive rotating elements in series. At impeller exit, the mixing process occurs with an increase in entropy, that is to say, a decrease in total pressure. In loss models including Two-zone and TEIS model, some empirical parameters have a great influence on overall performance curve. So these parameters' influences on the overall performance curve are investigated and compared with experimental data.

A Study on the Area Composition of the Operating Unit After Remodeling (수술부 리모델링을 통한 공간구성 변화에 관한 연구)

  • Kim, Khilchae
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.29 no.4
    • /
    • pp.57-67
    • /
    • 2023
  • Purpose: Recently, the operating unit remodeling compititon has been increasing rapidly in Korea, but there are no design infomation for spatial planning of sterile supply storage. Therefore, the propose of this study is to present area composition of the operating unit after remodeling. Methods: For literature review, the 6 studies and guidelines of operating unit(guidelines in the U.S, Australia, UK and Korea and 2 studies in Korea) conducted surveys and analysis. Room and space composition and zone of operating unit are redefined for this study. For obtaining area, to conduct masuring and calcuating of document of operating unit before and after remodeling in 3 cases. There are some patterns of plan in operaing unit by sterile supply storage. This study derived data for attributes of area composition of sterile supply storage. Results: The results of this study are as follows: First, Reviewing previous studies and Guidelines, for this study the suggested model was 5 zones(Operating zone, Support zone, Patient zone, Staff zone, Circulation zone) and redefined each room and space. Second, For infection control, sterile supply storage was provided to directly accessible to the operating room. Third, According to ralation of operting room and sterile supply storage, there are two types : 'double loaded type' and 'single loded type'. Sterile supply storage shall increase area of ciculation zone. Implications: This study can be used as primary data on remodeling of operating unit. In addition, it suggests that for infect control sterile supply storage is functional area.

Effect of Air Staging on NOx Reduction in Pulverized Coal Combustion (미분탄 연소에서 NOx 저감을 위한 공기다단의 효과)

  • Jang, Gil-Hong;Chang, In-Gab;Sun, Chil-Young;Chon, Mu-Hwan;Yang, Gwan-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.149-154
    • /
    • 1999
  • The influences of air staging on NOx emission and burnout of coal flames were investigated using 1MWth combustion test facility. The experiments showed that variation of overall excess air ratio led to a relatively higher NOx emission level for ${\lambda}=1.2.$ When air staging was applied to the combustion air, it was confirmed that a fuel rich primary combustion zone was established and unburned char was burened completely by mixing with the staged air supplied radially around the flame. The NOx emissions were redued by increasing the staged air flow rate, and staging air was suggested to be more than 40% of the total combustion air for the substantial NOx reduction.

  • PDF

A Study on the Transient Flow Process in a Vacuum Ejector-Diffuser System (진공 이젝터-디퓨져 시스템내의 비정상 유동 과정에 관한 연구)

  • Vincent, Lijo;Kim, Heuy-Dong;Setoguchi, T.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.299-302
    • /
    • 2009
  • The objective of the present study is to analyze the transient flow through theejector system with the help of a computational fluid dynamics (CFD) method. An attempt is made to investigate the interesting and conflicting phenomenon of the infinite entrainment into the primary stream without an infinite mass supply from the secondary chamber. The results obtained show that the one and only condition in which an infinite mass entrainment can be possible in such types of ejectors is the generation of a re-circulation zone near the primary nozzle exit. The flow in the secondary chamber attains a state of dynamic equilibrium of pressures at the onset of the recirculation zone. A steady flow in the ejector system is valid only after this point.

  • PDF