• Title/Summary/Keyword: Primary Air

Search Result 880, Processing Time 0.03 seconds

The influence of internal ring beams on the internal pressure for large cooling towers with wind-thermal coupling effect

  • Ke, Shitang;Yu, Wei;Ge, Yaojun;Zhao, in;Cao, Shuyang
    • Wind and Structures
    • /
    • v.28 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • Internal ring beams are primary components of new ring-stiffened cooling towers. In this study, numerical simulation of the internal flow field of a cooling tower with three ring beams under wind-thermal coupling effect is performed. The studied cooling tower is a 220-m super-large hyperbolic indirect natural draft cooling tower that is under construction in China and will be the World's highest cooling tower, the influence of peripheral radiators in operating cooling tower is also considered. Based on the simulation, the three-dimensional effect and distribution pattern of the wind loads on inner surface of the cooling tower is summarized, the average wind pressure distributions on the inner surface before and after the addition of the ring beams are analyzed, and the influence pattern of ring beams on the internal pressure coefficient value is derived. The action mechanisms behind the air flows inside the tower are compared. In addition, the effects of internal ring beams on temperature field characteristics, turbulence kinetic energy distribution, and wind resistance are analyzed. Finally, the internal pressure coefficients are suggested for ring-stiffened cooling towers under wind-thermal coupling effect. The study shows that the influence of internal stiffening ring beams on the internal pressure and flow of cooling towers should not be ignored, and the wind-thermal coupling effect should also be considered in the numerical simulation of cooling tower flow fields. The primary conclusions presented in this paper offer references for determining the internal suction of such ring-stiffened cooling towers.

Finding the operation conditions to minimize nitrous oxide emission from MLE configuration wastewater treatment plant using computer simulation program (컴퓨터 시뮬레이션을 이용한 MLE 공법 하수처리장에서 최저 아산화질소 발생 운전 조건 파악)

  • Jisoo Han;Mincheol Kim;Byonghi Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.19-38
    • /
    • 2023
  • Nitrous oxide, one of the six greenhouse gases from Kyoto protocol, is known to be emitted in biological nitrification and denitrification reactions at wastewater treatment plant. In this study, EQPS which is a computer program that can simulate nitrous oxide gas emission amount at wastewater treatment plants is used. The MLE process which treats wastewater from combined sewer is studied. Operational variables which are MLR, water temperature at reactor and primary clarifier by-pass percentage are changed to define the condition which produces the least amount of nitrous oxide gas. 200 % of MLR, 20 ℃ of water temperature at bioreactor and 15 % of primary clarifier by-pass percentage are shown the least nitrous oxide emission factor. Also, it is found that the deep aeration tank produces less amount of nitrous oxide gas since less air is required to meet oxygen demand in this type of aeration tank.

Estimation of Source Contribution by Air Pollutant Type (Point, Area, Line) over Seoul Metropolitan Area (수도권지역에서 오염원별 대기오염농도 기여도 평가)

  • Park, Il-Soo;Lee, Suk-Jo;Kim, Jong-Choon;Kim, Sang-Kyun;Lee, Dong-Won;Yoo, Chul;Lee, Jae-Bum;Song, Hyung-Do;Lee, Jung-Young;Kim, Ji-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.5
    • /
    • pp.495-505
    • /
    • 2005
  • This study is to estimate source contribution by air pollutantion types (point, area, line) over Seoul metropolitan area. The Air Pollution Model (TAPM) and the highly resolved anthropogenic and biogenic gridded emissions ($1km{\times}1km$) were applied to simulate $SO_2,\;NO_2,\;O_3\;and\;PM_{10}$ concentrations by seasons and contribution was estimated by their source types (point, area, line). The results showed that the simulated concentrations of secondary pollutant agreed well with observed values with an index of agreement (IOA) over 0.4, whereas IOAs over 0.3 were observed for most primary pollutants. The contributions of each source types by seasons were similar. The point source contribution was the highest for $SO_2$ at medium level ranged from $55.1\%\;to\;61.5\%$. But the contribution from area source during for the spring and summer increased as the concentration level increased. The line source contribution was the highest for $NO_2$ at all levels ranged from $68.3\%\;to\;93.1\%$. The results indicate that $SO_2$ emissions should be mainly controlled from point source, as well as area source at higher level concentration. Also, $NO_2\;and\;PM_{10}$ to from line source should be controlled.

Effects of Alloying Elements and Heat-Treatments on Abrasion Wear Behavior of High Alloyed White Cast Iron

  • Yu, Sung-Kon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.104-109
    • /
    • 2000
  • Three different white cast irons alloyed with Cr, V, Mo and W were prepared in order to study their abrasion wear behavior in as-cast and heat-treated conditions. The specimens were produced using a 15㎏-capacity high frequency induction furnace. Melts were super-heated to $1600^{\circ}C$, and poured at $1550^{\circ}C$ into Y-block pepset molds. Three combinations of the alloying elements were selected so as to obtain the different types of carbides : 3%C-10%Cr-5%Mo-5%W(alloy No. 1: $M_7C_3$ and $M_6C$), 3%C -10%V-5%Mo-5%W(alloy No. 2: MC and $M_2C$) and 3%C-17%Cr-3%V(alloy No. 3: $M_7C_3$ only). A scratching type abrasion test was carried out in the states of as-cast(AS), homogenizing(AH), air-hardening(AHF) and tempering(AHFT). First of all, the as-cast specimens were homogenized at $950^{\circ}C$ for 5h under the vacuum atmosphere. Then, they were austenitized at $1050^{\circ}C$ for 2h and followed by air-hardening in air. The air-hardened specimens were tempered at $300^{\circ}C$ for 3h. 1 ㎏ load was applied in order to contact the specimen with abrading wheel which was wound by 120 mesh SiC paper. The wear loss of the test piece(dimension: $50{\times}50{\times}5$ mm) was measured after one cycle of wear test and this procedure was repeated up to 8 cycles. In all the specimens, the abrasion wear loss was found to decrease in the order of AH, AS, AHFT and AHF states. Abrasion wear loss was lowest in the alloy No.2 and highest in the alloy No.1 except for the as-cast and homogenized condition in which the alloy No.3 showed the highest abrasion wear loss. The lowest abrasion wear loss of the alloy No.2 could be attributed to the fact that it contained primary and eutectic MC carbides, and eutectic $M_2C$ carbide with extremely high hardness. The matrix of each specimen was fully pearlitic in the as-cast state but it was transformed to martensite, tempered martensite and austenite depending upon the type of heat-treatment. From these results, it becomes clear that MC carbide is a significant phase to improve the abrasion wear resistance.

  • PDF

The Comparison of Quantitative Accuracy between Energy Window-Based and CT-Based Scatter Correction Method in SPECT/CT Images (SPECT/CT 영상에서 에너지창 기반 산란보정과 CT 기반 산란보정 방법의 정량적 정확성 비교)

  • Kim, Ji-Hyeon;Lee, Joo-Young
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.135-143
    • /
    • 2022
  • In SPECT image, scatter count is the cause of quantitative count error and image quality degradation. This study is to evaluate the accuracy of CT based SC(CTSC) and energy window based SC(EWSC) as the comparison with existing Non SC. SPECT/CT images were obtained after filling air in order to acquire a reference image without the influence of scatter count inside the Triple line insert phantom setting hot rod(99mTc 74.0 MBq) in the middle and each SPECT/CT image was obtained each separately after filling water instead of air in order to derive the influence of scatter count under the same conditions. For EWSC, 9 sub-energy windows were set additionally in addition to main energy window(140 keV, 20%) and then, images were acquired at the same time and five types of EWSC including DPW(dual photo-peak window)10%, DEW(dual energy window)20%, TEW(triple energy window)10%, TEW5.0%, TEW2.5% were used. Under the condition without fluctuations in primary count, total count was measured by drawing volume of interest (VOI) in the images of the two conditions and then, the ratio of scatter count of total counts was calculated as percent scatter fraction(%SF) and the count error with image filled with water was evaluated with percent normalized mean-square error(%NMSE) based on the image filled with air. Based on the image filled with air, %SF of images filled with water to which each SC method was applied is non scatter correction(NSC) 37.44, DPW 27.41, DEW 21.84, TEW10% 19.60, TEW5% 17.02, TEW2.5% 14.68, CTSC 5.57 and the scatter counts were removed the most in CTSC and %NMSE is NSC 35.80, DPW 14.28, DEW 7.81, TEW10% 5.94, TEW5% 4.21, TEW2.5% 2.96, CTSC 0.35 and the error in CTSC was found to be the lowest. In SPECT/CT images, the application of each scatter correction method used in the experiment could improve the quantitative count error caused by the influence of scatter count. In particular, CTSC showed the lowest %NMSE(=0.35) compared to existing EWSC methods, enabling relatively accurate scatter correction.

Development of an IMU-based Wearable Ankle Device for Military Motion Recognition (군사 동작 인식을 위한 IMU 기반 발목형 웨어러블 디바이스 개발)

  • Byeongjun Jang;Jeonghoun Cho;Dohyeon Kim;Kyeong-Won Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.23-34
    • /
    • 2023
  • Wearable technology for military applications has received considerable attention as a means of personal status check and monitoring. Among many, an implementation to recognize specific motion states of a human is promising in that allows active management of troops by immediately collecting the operational status and movement status of individual soldiers. In this study, as an extension of military wearable application research, a new ankle wearable device is proposed that can glean the information of a soldier on the battlefield on which action he/she takes in which environment. Presuming a virtual situation, the soldier's upper limbs are easily exposed to uncertainties about circumstances. Therefore, a sensing module is attached to the ankle of the soldier that may always interact with the ground. The obtained data comprises 3-axis accelerations and 3-axis rotational velocities, which cannot be interpreted by hand-made algorithms. In this study, to discern the behavioral characteristics of a human using these dynamic data, a data-driven model is introduced; four features extracted from sliced data (minimum, maximum, mean, and standard deviation) are utilized as an input of the model to learn and classify eight primary military movements (Sitting, Standing, Walking, Running, Ascending, Descending, Low Crawl, and High Crawl). As a result, the proposed device could recognize a movement status of a solider with 95.16% accuracy in an arbitrary test situation. This research is meaningful since an effective way of motion recognition has been introduced that can be furtherly extended to various military applications by incorporating wearable technology and artificial intelligence.

Effect of Hot-air Drying Temperature on Volatile Compounds in Chrysanthemum boreale M. Flowers (열풍 건조온도에 따른 산국의 휘발성 성분 변화)

  • Bae, Sung-Mun;Lee, Seung-Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.466-469
    • /
    • 2008
  • This study examined the effect of drying temperature on the qualitative properties of Chrysanthemum boreale M. flowers. The flower samples were dried in a hot air dryer at $40^{\circ}C$, $50^{\circ}C$, and $60^{\circ}C$, respectively, to attain a $23{\pm}1%$ moisture content. The time required to reach the target moisture content was 8.5-69 hr, and there was a very high negative correlation between log (spending time) and temperature. The Hunter color L- and b-values of the flowers were decreased with increasing drying temperature, whereas the a-value was increased. The volatile compounds contained in the dried flowers were determined by a solid-phase microextraction method. Twelve primary volatile compounds were detected and then quantified based on the GC chromatograms of the samples. The total contents of volatile compounds were increased with increasing drying temperature, and germacrene D and camphor were the main compounds in all samples.

A study on the Effectiveness of Urban air temperature Through Citizen Participation (시민참여형 도시온도 모니터링의 실효성에 관한 연구)

  • Kim, Eun-Sub;Lee, Dong-Kun;Won, Ji-Eun;Choi, Sun-Kyung;Kim, Mi-Hwa;Bae, Chae-Young;Park, Sang-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.5
    • /
    • pp.87-98
    • /
    • 2020
  • At the point of implementing policies related to urban heat through the overall environmental assessment of the city using national data, citizen science projects that can collect data in a wide range are emerging for effective policy establishment. Although the utility of citizen data is improving, data quality is a primary concern for researchers employing public participation in scientific research. In this study, validation was conducted based on citizen data acquired in the "Suwon City Heat Map Project", and the applicability to temperature monitoring was confirmed based on the results. As a result of analyzing the validity verification of citizen data using three methods, the data result value is 0.843, RMSE: 0.683℃, and a meaningful value was found within 3km of national data. We found that citizen data utilization is high through the results of this study and These projects are expected to be used as basic data for establishing effective policies or can be reflected in the various planning.

On Surface Ozone Observed in the Seoul Metropolitan Area during 1989 and 1990 (서울 수도권 지역의 광화학오존에 관한 연구)

  • 정용승;정재섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.169-179
    • /
    • 1991
  • Atmospheric $O_3$ in the biosphere is formed under the favourable meteorological condition, when the primary pollutants, such as $NO_2, HC, CO, CH_4$, etc., react with over constituents. Observed annual average concentrations for 1989 and 1990 were 11.8 and 10.4 ppb, respectively. THe number of days measured ozone over 80 ppb in Seoul were 36 in 1989 and 39 in 1990. In general, monthly maximum values occurred in May and August. In comparison with 1 $\sim$ 2 maxima of $O_3$ distribution in large cities in other countries, it was found that there were 3 $\sim$ 4 maxima in Seoul and its suburbs. Topographic effects, resulted by wind channelling in the Han River valley and by the blocking of air pollutants in the mountain, appeared to produce multiple centres of $O_3$ maxima in Seoul. Surface $O_3$ values were low with decreasing solar radiation, when the cloudiness increased and precipitation occurred. According to 12 cases examined, 2 cases shown here, $O_3$ values exceeding 80 ppb were occurred when the Korean peninsular was under the influence of the backside airflows with high intensity of solar radiation. Occasionally, sea breezes were observed to occur in warm seasons, and the chanelling effect of the Han River valley appeared to increase the general wind (speed) to the east side of Seoul. In this meso-scale situation $O_3$ in downwind is highly correlated with precursors. The sea breeze of 2 $\sim$ 4 m $s^{-1}$ will take 3 $\sim$ 5 hours to transport photochemical precursors for 20 $\sim$ 50 km. In turn the areas of maximum $O_3$ occurrence in Seoul are in the range of meso-scale transport of air pollutants.

  • PDF

Analysis of Organic Compounds in Ambient PM2.5 over Seoul using Thermal Desorption-comprehensive Two Dimensional Gas Chromatography-time of Flight Mass Spectrometry (TD-GCxGC-TOFMS) (Thermal Desorption-comprehensive Two Dimensional Gas Chromatography-time of Flight Mass Spectrometry (TD-GCxGC-TOFMS)을 이용한 서울 대기 중 PM2.5 유기성분 분석)

  • Lee, Ji-Yi;Lane, Douglas A.;Huh, Jong-Bae;Yi, Sung-Muk;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.5
    • /
    • pp.420-431
    • /
    • 2009
  • Characteristics and advantages of the thermal desorption-comprehensive two dimensional gas chromatography-time of flight mass spectrometry (TD-GCxGC-TOFMS) were discussed and the organic compound's analysis result was shown for the ambient $PM_{2.5}$ sample collected in Seoul, Korea. Over 10,000 individual organic compounds were separated from about $70{\mu}g$ of aerosols in a single procedure with no sample pre-treatment. Among them, around 300 compounds were identified and classified based on the mass fragmentation patterns and GCxGC retention times. Several aliphatic compounds groups such as alkanes, alkenes, cycloalkanes, alkanoic acids, and alkan-2-ones were identified as well as 72 PAH compounds including alkyl substituted compounds and 8 hopanes. In Seoul aerosol, numerous oxidized aromatic compounds including major components of secondary organic aerosols were observed. The inventory of organic compounds in $PM_{2.5}$ of Seoul, Korea suggested that organic aerosol were constituted by the compounds of primary source emission as well as the formation of secondary organic aerosols.