• Title/Summary/Keyword: Price prediction

Search Result 413, Processing Time 0.027 seconds

Cashew reject meal in diets of laying chickens: nutritional and economic suitability

  • Akande, Taiwo O;Akinwumi, Akinyinka O;Abegunde, Taye O
    • Journal of Animal Science and Technology
    • /
    • v.57 no.5
    • /
    • pp.17.1-17.6
    • /
    • 2015
  • The present study investigated the nutritional and economic suitability of cashew reject meal (full fat and defatted) as replacement for groundnut cake (GNC) in the diets of laying chickens. A total of eighty four brown shavers at 25 weeks of age were randomly allotted into seven dietary treatments each containing 6 replicates of 2 birds each. The seven diets prepared included diet 1, a control with GNC at $220gkg^{-1}$ as main protein source in the diet. Diets 2, 3 and 4 consist of gradual replacement of GNC with defatted cashew reject meal (DCRM) at 50%, 75% and 100% on weight for weight basis respectively while diets 5, 6 and 7 consist of gradual inclusion of full fat cashew reject meal (FCRM) to replace 25%, 35% and 50% of GNC protein respectively. Each group was allotted a diet in a completely randomized design in a study that lasted eight weeks during which records of the chemical constituent of the test ingredients, performance characteristics, egg quality traits and economic indicators were measured. Results showed that the crude protein were 22.10 and 35.4% for FCRM and DCRM respectively. Gross energy of DCRM was 5035 kcal/kg compared to GNC, 4752 kcal/kg. Result of aflatoxin $B_1$ revealed moderate level between 10 and $17{\mu}g/Kg$ in DCRM and GNC samples respectively. Birds on control gained 10 g, while those on DCRM and FCRM gained about 35 g and 120 g respectively. Feed intake declined (P < 0.05) with increased level of FCRM. Hen day production was highest in birds fed DCRM, followed by control and lowest value (P < 0.05) was recorded for FCRM. No significant change (P > 0.05) was observed for egg weight and shell thickness. Fat deposition and cholesterol content increased (P > 0.05) with increasing level of FCRM. The cost of feed per kilogram decreased gradually with increased inclusion level of CRM. The prediction equation showed the relative worth of DCRM compared to GNC was 92.3% whereas the actual market price of GNC triples that of DCRM. It was recommended that GNC could be completely replaced by DCRM in layer's diets in regions where this by product is abundant. However, FCRM should be cautiously used in diets of laying chickens.

A Study on the Influence of Elderly Household Characteristics on Housing Consumption according to Public Pension Receipt (중·고령자 가구의 소득의 특성이 주택소비규모에 미치는 영향: 공적연금수령유무를 중심으로)

  • Jung, Sang Joon;Lee, Chang Moo;Shin, Hye Young
    • Korea Real Estate Review
    • /
    • v.28 no.1
    • /
    • pp.105-114
    • /
    • 2018
  • According to Statistics Korea, South Korea has entered the realm of the "aging society" with the rapid development of the country's population. Researchers anticipate that the extremely high (73%) ratio of real estate property to total assets for mid-age to aged households in South Korea that do not have a fixed income may cause serious problems in the future. For example, the real estate market in South Korea may be bombarded with properties listed for sale, causing the average property price to drop due to the abundant supply. Although this prediction may be reasonable, this concept has excluded the idea of pension (which is crucial as it can be considered a consistent and fixed income) due to the limited amount of available data thereon; as such, it is important to include this factor to improve the pertinent research. Thus, this research was conducted using the data from the $3^{rd}$ and $5^{th}$ Korea Retirement and Income Study. For the study results, it was found that variables such as net asset, gender, education, and number of family members have the same impact as that found in the previous studies. To extend from here, two new factors were introduced: the existence of pensions and the amount of pension received by a household. From there, it was found that the existence of a consistent and fixed income such as a pension has led to an increase in housing consumption, the area of interest of the authors.

Long Range Forecast of Garlic Productivity over S. Korea Based on Genetic Algorithm and Global Climate Reanalysis Data (전지구 기후 재분석자료 및 인공지능을 활용한 남한의 마늘 생산량 장기예측)

  • Jo, Sera;Lee, Joonlee;Shim, Kyo Moon;Kim, Yong Seok;Hur, Jina;Kang, Mingu;Choi, Won Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.391-404
    • /
    • 2021
  • This study developed a long-term prediction model for the potential yield of garlic based on a genetic algorithm (GA) by utilizing global climate reanalysis data. The GA is used for digging the inherent signals from global climate reanalysis data which are both directly and indirectly connected with the garlic yield potential. Our results indicate that both deterministic and probabilistic forecasts reasonably capture the inter-annual variability of crop yields with temporal correlation coefficients significant at 99% confidence level and superior categorical forecast skill with a hit rate of 93.3% for 2 × 2 and 73.3% for 3 × 3 contingency tables. Furthermore, the GA method, which considers linear and non-linear relationships between predictors and predictands, shows superiority of forecast skill in terms of both stability and skill scores compared with linear method. Since our result can predict the potential yield before the start of farming, it is expected to help establish a long-term plan to stabilize the demand and price of agricultural products and prepare countermeasures for possible problems in advance.

Operating Budget Management Plan on Electric Energy Consumption of Educational Facilities (교육시설물의 전기에너지 사용량에 따른 운영예산 관리방안)

  • Wang, Ji-Hwan;Jin, Chengquan;Lee, Sanghoon;Hyun, Chang-Taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.4
    • /
    • pp.26-35
    • /
    • 2022
  • The 7th education reform in 1997 has led changes in the way buildings were constructed and such changes drove educational facilities to steadily consume more energy every year. Also, these facilities take several years' estimated expenditure as well as the increased unit price of electricity into account when planning their annual operating budget. Such circumstances may adversely affect the establishment of their budget plan since improper allocation of operating costs could take place. To propose educational facilities' operating budget management plan on electrical energy consumption, this study developed a model that help oversee the facilities' consumption of electrical energy. For the model development, the primary core variables related to electrical energy factors from the aspects of surroundings, physics, policy, etc. were derived from taking both literature research and the characteristics of these facilities into account. The secondary core variables were then derived using the correlation analysis. Lastly, the electric energy use prediction model was developed by performing regression analysis based on the derived secondary core variables.

A Study on the Prediction Models of Used Car Prices for Domestic Brands Using Machine Learning (머신러닝을 활용한 브랜드별 국내 중고차 가격 예측 모델에 관한 연구)

  • Seungjun Yim;Joungho Lee;Choonho Ryu
    • Journal of Service Research and Studies
    • /
    • v.13 no.3
    • /
    • pp.105-126
    • /
    • 2023
  • The domestic used car market continues to grow along with the used car online platform service. The used car online platform service discloses vehicle specifications, accident history, inspection history, and detailed options to service consumers. Most of the preceding studies were predictions of used car prices using vehicle specifications and some options for vehicles. As a result of the study, it was confirmed that there was a nonlinear relationship between used car prices and some specification variables. Accordingly, the researchers tried to solve the nonlinear problem by executing a Machine Learning model. In common, the Regression based Machine Learning model had the advantage of knowing the actual influence and direction of variables, but there was a disadvantage of low Cost Function figures compared to the Decision Tree based Machine Learning model. This study attempted to predict used car prices of six domestic brands by utilizing both vehicle specifications and vehicle options. Through this, we tried to collect the advantages of the two types of Machine Learning models. To this end, we sequentially conducted a regression based Machine Learning model and a decision tree based Machine Learning model. As a result of the analysis, the practical influence and direction of each brand variable, and the best tree based Machine Learning model were selected. The implications of this study are as follows. It will help buyers and sellers who use used car online platform services to predict approximate used car prices. And it is hoped that it will help solve the problem caused by information inequality among users of the used car online platform service.

Automation of Regression Analysis for Predicting Flatfish Production (광어 생산량 예측을 위한 회귀분석 자동화 시스템 구축)

  • Ahn, Jinhyun;Kang, Jungwoon;Kim, Mincheol;Park, So-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.128-130
    • /
    • 2021
  • This study aims to implement a Regression Analysis system for predicting the appropriate production of flatfish. Due to Korea's signing of FTAs with countries around the world and accelerating market opening, Korean flatfish farming businesses are experiencing many difficulties due to the specificity and uncertainty of the environment. In addition, there is a need for a solution to problems such as sluggish consumption and price drop due to the recent surge in imported seafood such as salmon and yellowtail and changes in people's dietary habits. in this study, Using the python module, xlwings, it was used to obtain for the production amount of flatfish and to predict the amount of flatfish to be produced later. was used to predict the amount of flatfish to be produced in the future. Therefore, based on the analysis results of this prediction of flatfish production, the flatfish aquaculture industry will be able to come up with a plan to achieve an appropriate production volume and control supply and demand, which will reduce unnecessary economic loss and promote new value creation based on data. In addition, through the data approach attempted in this study, various analysis techniques such as artificial neural networks and multiple regression analysis can be used in future research in various fields, which will become the foundation of basic data that can effectively analyze and utilize big data in various industries.

  • PDF

A global-scale assessment of agricultural droughts and their relation to global crop prices (전 지구 농업가뭄 발생특성 및 곡물가격과의 상관성 분석)

  • Kim, Daeha;Lee, Hyun-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.883-893
    • /
    • 2023
  • While South Korea's dependence on imported grains is very high, droughts impacts from exporting countries have been overlooked. Using the Evaporative Stress Index (ESI), this study globally analyzed frequency, extent, and long-term trends of agricultural droughts and their relation to natural oscillations and global crop prices. Results showed that global-scale correlations were found between ESI and soil moisture anomalies, and they were particularly strong in crop cultivation areas. The high correlations in crop cultivation areas imply a strong land-atmosphere coupling, which can lead to relatively large yield losses with a minor soil moisture deficits. ESI showed a clear decreasing trend in crop cultivation areas from 1991 to 2022, and this trend may continue due to global warming. The sharp increases in the grain prices in 2012 and 2022 were likely related to increased drought areas in major grain-exporting countries, and they seemed to elevate South Korea's producer price index. This study suggests the need for drought risk management for grain-exporting countries to reduce socioeconomic impacts in South Korea.

A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems (지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구)

  • Kim, Sun-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.19-32
    • /
    • 2010
  • Volatility plays a central role in both academic and practical applications, especially in pricing financial derivative products and trading volatility strategies. This study presents a novel mechanism based on generalized autoregressive conditional heteroskedasticity (GARCH) models that is able to enhance the performance of intelligent volatility trading systems by predicting Korean stock market volatility more accurately. In particular, we embedded the concept of the volatility asymmetry documented widely in the literature into our model. The newly developed Korean stock market volatility index of KOSPI 200, VKOSPI, is used as a volatility proxy. It is the price of a linear portfolio of the KOSPI 200 index options and measures the effect of the expectations of dealers and option traders on stock market volatility for 30 calendar days. The KOSPI 200 index options market started in 1997 and has become the most actively traded market in the world. Its trading volume is more than 10 million contracts a day and records the highest of all the stock index option markets. Therefore, analyzing the VKOSPI has great importance in understanding volatility inherent in option prices and can afford some trading ideas for futures and option dealers. Use of the VKOSPI as volatility proxy avoids statistical estimation problems associated with other measures of volatility since the VKOSPI is model-free expected volatility of market participants calculated directly from the transacted option prices. This study estimates the symmetric and asymmetric GARCH models for the KOSPI 200 index from January 2003 to December 2006 by the maximum likelihood procedure. Asymmetric GARCH models include GJR-GARCH model of Glosten, Jagannathan and Runke, exponential GARCH model of Nelson and power autoregressive conditional heteroskedasticity (ARCH) of Ding, Granger and Engle. Symmetric GARCH model indicates basic GARCH (1, 1). Tomorrow's forecasted value and change direction of stock market volatility are obtained by recursive GARCH specifications from January 2007 to December 2009 and are compared with the VKOSPI. Empirical results indicate that negative unanticipated returns increase volatility more than positive return shocks of equal magnitude decrease volatility, indicating the existence of volatility asymmetry in the Korean stock market. The point value and change direction of tomorrow VKOSPI are estimated and forecasted by GARCH models. Volatility trading system is developed using the forecasted change direction of the VKOSPI, that is, if tomorrow VKOSPI is expected to rise, a long straddle or strangle position is established. A short straddle or strangle position is taken if VKOSPI is expected to fall tomorrow. Total profit is calculated as the cumulative sum of the VKOSPI percentage change. If forecasted direction is correct, the absolute value of the VKOSPI percentage changes is added to trading profit. It is subtracted from the trading profit if forecasted direction is not correct. For the in-sample period, the power ARCH model best fits in a statistical metric, Mean Squared Prediction Error (MSPE), and the exponential GARCH model shows the highest Mean Correct Prediction (MCP). The power ARCH model best fits also for the out-of-sample period and provides the highest probability for the VKOSPI change direction tomorrow. Generally, the power ARCH model shows the best fit for the VKOSPI. All the GARCH models provide trading profits for volatility trading system and the exponential GARCH model shows the best performance, annual profit of 197.56%, during the in-sample period. The GARCH models present trading profits during the out-of-sample period except for the exponential GARCH model. During the out-of-sample period, the power ARCH model shows the largest annual trading profit of 38%. The volatility clustering and asymmetry found in this research are the reflection of volatility non-linearity. This further suggests that combining the asymmetric GARCH models and artificial neural networks can significantly enhance the performance of the suggested volatility trading system, since artificial neural networks have been shown to effectively model nonlinear relationships.

Optimization of Support Vector Machines for Financial Forecasting (재무예측을 위한 Support Vector Machine의 최적화)

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.241-254
    • /
    • 2011
  • Financial time-series forecasting is one of the most important issues because it is essential for the risk management of financial institutions. Therefore, researchers have tried to forecast financial time-series using various data mining techniques such as regression, artificial neural networks, decision trees, k-nearest neighbor etc. Recently, support vector machines (SVMs) are popularly applied to this research area because they have advantages that they don't require huge training data and have low possibility of overfitting. However, a user must determine several design factors by heuristics in order to use SVM. For example, the selection of appropriate kernel function and its parameters and proper feature subset selection are major design factors of SVM. Other than these factors, the proper selection of instance subset may also improve the forecasting performance of SVM by eliminating irrelevant and distorting training instances. Nonetheless, there have been few studies that have applied instance selection to SVM, especially in the domain of stock market prediction. Instance selection tries to choose proper instance subsets from original training data. It may be considered as a method of knowledge refinement and it maintains the instance-base. This study proposes the novel instance selection algorithm for SVMs. The proposed technique in this study uses genetic algorithm (GA) to optimize instance selection process with parameter optimization simultaneously. We call the model as ISVM (SVM with Instance selection) in this study. Experiments on stock market data are implemented using ISVM. In this study, the GA searches for optimal or near-optimal values of kernel parameters and relevant instances for SVMs. This study needs two sets of parameters in chromosomes in GA setting : The codes for kernel parameters and for instance selection. For the controlling parameters of the GA search, the population size is set at 50 organisms and the value of the crossover rate is set at 0.7 while the mutation rate is 0.1. As the stopping condition, 50 generations are permitted. The application data used in this study consists of technical indicators and the direction of change in the daily Korea stock price index (KOSPI). The total number of samples is 2218 trading days. We separate the whole data into three subsets as training, test, hold-out data set. The number of data in each subset is 1056, 581, 581 respectively. This study compares ISVM to several comparative models including logistic regression (logit), backpropagation neural networks (ANN), nearest neighbor (1-NN), conventional SVM (SVM) and SVM with the optimized parameters (PSVM). In especial, PSVM uses optimized kernel parameters by the genetic algorithm. The experimental results show that ISVM outperforms 1-NN by 15.32%, ANN by 6.89%, Logit and SVM by 5.34%, and PSVM by 4.82% for the holdout data. For ISVM, only 556 data from 1056 original training data are used to produce the result. In addition, the two-sample test for proportions is used to examine whether ISVM significantly outperforms other comparative models. The results indicate that ISVM outperforms ANN and 1-NN at the 1% statistical significance level. In addition, ISVM performs better than Logit, SVM and PSVM at the 5% statistical significance level.

Shipping Industry Support Plan based on Research of Factors Affecting on the Freight Rate of Bulk Carriers by Sizes (부정기선 운임변동성 영향 요인 분석에 따른 우리나라 해운정책 지원 방안)

  • Cheon, Min-Soo;Mun, Ae-ri;Kim, Seog-Soo
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.4
    • /
    • pp.17-30
    • /
    • 2020
  • In the shipping industry, it is essential to engage in the preemptive prediction of freight rate volatility through market monitoring. Considering that freight rates have already started to fall, the loss of shipping companies will soon be uncontrollable. Therefore, in this study, factors affecting the freight rates of bulk carriers, which have relatively large freight rate volatility as compared to container freight rates, were quantified and analyzed. In doing so, we intended to contribute to future shipping market monitoring. We performed an analysis using a vector error correction model and estimated the influence of six independent variables on the charter rates of bulk carriers by Handy Size, Supramax, Panamax, and Cape Size. The six independent variables included the bulk carrier fleet volume, iron ore traffic volume, ribo interest rate, bunker oil price, and Euro-Dollar exchange rate. The dependent variables were handy size (32,000 DWT) spot charter rates, Supramax 6 T/C average charter rates, Pana Max (75,000 DWT) spot charter, and Cape Size (170,000 DWT) spot charter. The study examined charter rates by size of bulk carriers, which was different from studies on existing specific types of ships or fares in oil tankers and chemical carriers other than bulk carriers. Findings revealed that influencing factors differed for each ship size. The Libo interest rate had a significant effect on all four ship types, and the iron ore traffic volume had a significant effect on three ship types. The Ribo rate showed a negative (-) relationship with Handy Size, Supramax, Panamax, and Cape Size. Iron ore traffic influenced three types of linearity, except for Panamax. The size of shipping companies differed depending on their characteristics. These findings are expected to contribute to the establishment of a management strategy for shipping companies by analyzing the factors influencing changes in the freight rates of charterers, which have a profound effect on the management performance of shipping companies.