• Title/Summary/Keyword: Price change prediction

Search Result 56, Processing Time 0.026 seconds

Influence of Interests in Geographical Indication on the Prediction of Price Change of Agricultural Product : Case of Apples (지리적 표시제에 대한 관심이 농산물 가격변화 예측에 미치는 영향 연구 : 사과를 사례로)

  • Choi, Hyo Shin;Sohn, So Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.4
    • /
    • pp.359-367
    • /
    • 2015
  • Geographical Indication (GI) has been used with the expectation to influence customer buying behavior. In this research, we empirically investigate if such relationship exists using apple price changes in Korea along with web search traffic reflecting customers' interest in GI. The experimental results indicate that the apple price of the past, apple supply and web search traffic including GI name were significant on the prediction of price change of Chungju while web search traffic of regional name and that of product were significant for Cheongsong apples with GI. In Yeongcheon with no GI, the apple price of the past turns out to be significant only. The results indicated that interests in GI can help the price prediction but the regional name itself can play the same role, if the GI product is well known in association with the region.

Using Evolutionary Optimization to Support Artificial Neural Networks for Time-Divided Forecasting: Application to Korea Stock Price Index

  • Oh, Kyong Joo
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.153-166
    • /
    • 2003
  • This study presents the time-divided forecasting model to integrate evolutionary optimization algorithm and change point detection based on artificial neural networks (ANN) for the prediction of (Korea) stock price index. The genetic algorithm(GA) is introduced as an evolutionary optimization method in this study. The basic concept of the proposed model is to obtain intervals divided by change points, to identify them as optimal or near-optimal change point groups, and to use them in the forecasting of the stock price index. The proposed model consists of three phases. The first phase detects successive change points. The second phase detects the change-point groups with the GA. Finally, the third phase forecasts the output with ANN using the GA. This study examines the predictability of the proposed model for the prediction of stock price index.

Structural Change in the Price-Dividend Ratio and Implications on Stock Return Prediction Regression

  • Lee, Ho-Jin
    • The Korean Journal of Financial Management
    • /
    • v.24 no.2
    • /
    • pp.183-206
    • /
    • 2007
  • The price-dividend ratio is one of the most frequently used financial variables to predict long-horizon stock return. However, the persistency of the price-dividend ratio is found to cause the spuriousness of the stock return prediction regression. The stable relationship between the stock price and the dividend, however, seems to weaken after World War II and to experience structural break. In this paper, we identify a structural change in the cointegrating relationship between the log of the stock price and the log of the dividend. Confirming a structural break in 1962, we subdivide the sample and apply the fully modified estimator to correct for the nonstationarity of the regressor. With the subdivided sample, we exercise the nonparametric bootstrap procedure to derive the empirical distribution of the test statistics and fail to find return predictability in each subsample period.

  • PDF

Two-Stage Forecasting Using Change-Point Detection and Artificial Neural Networks for Stock Price Index (주가지수예측에서의 변환시점을 반영한 이단계 신경망 예측모형)

  • Oh, Kyong-Joo;Kim, Kyoung-Jae;Han, In-Goo
    • Asia pacific journal of information systems
    • /
    • v.11 no.4
    • /
    • pp.99-111
    • /
    • 2001
  • The prediction of stock price index is a very difficult problem because of the complexity of stock market data. It has been studied by a number of researchers since they strongly affect other economic and financial parameters. The movement of stock price index has a series of change points due to the strategies of institutional investors. This study presents a two-stage forecasting model of stock price index using change-point detection and artificial neural networks. The basic concept of this proposed model is to obtain intervals divided by change points, to identify them as change-point groups, and to use them in stock price index forecasting. First, the proposed model tries to detect successive change points in stock price index. Then, the model forecasts the change-point group with the backpropagation neural network(BPN). Finally, the model forecasts the output with BPN. This study then examines the predictability of the integrated neural network model for stock price index forecasting using change-point detection.

  • PDF

Two-Stage forecasting Using Change-Point Detection and Artificial Neural Networks for Stock Price Index

  • Oh, Kyong-Joo;Kim, Kyoung-Jae;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.427-436
    • /
    • 2000
  • The prediction of stock price index is a very difficult problem because of the complexity of the stock market data it data. It has been studied by a number of researchers since they strong1y affect other economic and financial parameters. The movement of stock price index has a series of change points due to the strategies of institutional investors. This study presents a two-stage forecasting model of stock price index using change-point detection and artificial neural networks. The basic concept of this proposed model is to obtain Intervals divided by change points, to identify them as change-point groups, and to use them in stock price index forecasting. First, the proposed model tries to detect successive change points in stock price index. Then, the model forecasts the change-point group with the backpropagation neural network (BPN). Fina1ly, the model forecasts the output with BPN. This study then examines the predictability of the integrated neural network model for stock price index forecasting using change-point detection.

  • PDF

Exploring performance improvement through split prediction in stock price prediction model (주가 예측 모델에서의 분할 예측을 통한 성능향상 탐구)

  • Yeo, Tae Geon Woo;Ryu, Dohui;Nam, Jungwon;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.503-509
    • /
    • 2022
  • The purpose of this study is to set the rate of change between the market price of the next day and the previous day to be predicted as the predicted value, and the market price for each section is generated by dividing the stock price ranking of the next day to be predicted at regular intervals, which is different from the previous papers that predict the market price. We would like to propose a new time series data prediction method that predicts the market price change rate of the final next day through a model using the rate of change as the predicted value. The change in the performance of the model according to the degree of subdivision of the predicted value and the type of input data was analyzed.

An Intelligent Gold Price Prediction Based on Automated Machine and k-fold Cross Validation Learning

  • Baguda, Yakubu S.;Al-Jahdali, Hani Meateg
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.65-74
    • /
    • 2021
  • The rapid change in gold price is an issue of concern in the global economy and financial markets. Gold has been used as a means for trading and transaction around the world for long period of time and it plays an integral role in monetary, business, commercial and financial activities. More importantly, it is used as economic measure for the global economy and will continue to play an important economic vital role - both locally and globally. There has been an explosive growth in demand for efficient and effective scheme to predict gold price due its volatility and fluctuation. Hence, there is need for the development of gold price prediction scheme to assist and support investors, marketers, and financial institutions in making effective economic and monetary decisions. This paper primarily proposed an intelligent based system for predicting and characterizing the gold market trend. The simulation result shows that the proposed intelligent gold price scheme has been able to predict the gold price with high accuracy and precision, and ultimately it has significantly reduced the prediction error when compared to baseline neural network (NN).

Development of a Continuous Prediction System of Stock Price Based on HTM Network (HTM 기반의 주식가격 연속 예측 시스템 개발)

  • Seo, Dae-Ho;Bae, Sun-Gap;Kim, Sung-Jin;Kang, Hyun-Syug;Bae, Jong-Min
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.9
    • /
    • pp.1152-1164
    • /
    • 2011
  • Stock price is stream data to change continuously. The characteristics of these data, stock trends according to flow of time intervals may differ. therefore, stock price should be continuously prediction when the price is updated. In this paper, we propose the new prediction system that continuously predicts the stock price according to the predefined time intervals for the selected stock item using HTM model. We first present a preprocessor which normalizes the stock data and passes its result to the stream sensor. We next present a stream sensor which efficiently processes the continuous input. In addition, we devise a storage node which stores the prediction results for each level and passes it to next upper level and present the HTM network for prediction using these nodes. We show experimented our system using the actual stock price and shows its performance.

Performance Evaluation of Price-based Input Features in Stock Price Prediction using Tensorflow (텐서플로우를 이용한 주가 예측에서 가격-기반 입력 피쳐의 예측 성능 평가)

  • Song, Yoojeong;Lee, Jae Won;Lee, Jongwoo
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.11
    • /
    • pp.625-631
    • /
    • 2017
  • The stock price prediction for stock markets remains an unsolved problem. Although there have been various overtures and studies to predict the price of stocks scientifically, it is impossible to predict the future precisely. However, stock price predictions have been a subject of interest in a variety of related fields such as economics, mathematics, physics, and computer science. In this paper, we will study fluctuation patterns of stock prices and predict future trends using the Deep learning. Therefore, this study presents the three deep learning models using Tensorflow, an open source framework in which each learning model accepts different input features. We expand the previous study that used simple price data. We measured the performance of three predictive models increasing the number of priced-based input features. Through this experiment, we measured the performance change of the predictive model depending on the price-based input features. Finally, we compared and analyzed the experiment result to evaluate the impact of the price-based input features in stock price prediction.

Prediction of Oak Mushroom Prices Using Box-Jenkins Methodology (Box-Jenkins 모형을 이용한 표고버섯 가격예측)

  • Min, Kyung-Taek
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.778-783
    • /
    • 2006
  • Price prediction is essential to decisions of investment and shipment in oak mushroom cultivation. But predicting the prices of oak mushroom is very difficult because there are so many uncertain factors affecting the demand and the supply in the market. The Box-Jenkins methodology is one of strong tools in price prediction especially for the short-term using historical observations of time series. In this paper, the Box-Jenkins methodology is applied to find a model to forecast future oak mushroom prices. And out-of-sample test was conducted to check out the prediction accuracy. The result shows the high accuracy except for market disturbance period affected by unexpected weather change and reveals the usefulness of the model.