• Title/Summary/Keyword: Pretreatment processes

Search Result 216, Processing Time 0.022 seconds

Removal Characteristics of Organic Matters in Pretreatment and Reverse Osmosis Membrane Processes for Seawater Desalination (해수담수화 전처리 및 역삼투막여과 공정의 유기물 제거특성)

  • Kim, Dong-Kwan;Choi, June-Seok;Lee, Chang-Kyu;Kim, Jinho;Choi, Jeong-Hak;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.492-497
    • /
    • 2014
  • This study investigated removal characteristics of organic matters in pretreatment and reverse osmosis (RO) membrane processes for seawater desalination. Also, the influence of the changes in characteristics of organic matters on the membrane fouling was assessed. The pretreatment processes included dual media filtration (DMF), pressurized membrane filtration (MF), and submerged membrane filtration (SMF). Turbidity, UV absorption at 254 nm, dissolved organic carbon, size exclusion chromatography (SEC), fluorescence excitation emission matrix (FEEM), and transparent exopolymer particles (TEP) in raw and processed waters were analyzed. Ions and minerals were not removed by any pretreatment process tested, but were removed over 99% through the RO membrane process. Hydrophobic organics, which can play major role in organic membrane fouling, were relatively readily removed compared with hydrophilic ones. Membrane based pretreatment such as MF and SMF exhibited better removals of organics than conventional DMF. As the levels of organics in pretreated water decreased, the silt density index (SDI) decreased. MF treated water exhibited the lowest SDI value; this is possibly due to the lowest TEP ($0.1-0.4{\mu}m$) concentrations.

Long Term Operation of Microfiltration as a Pretreatment for Seawater Reverse Osmosis Processes (정밀여과를 이용한 역삼투법 해수담수화 전처리 공정의 장기운전 특성)

  • Kim, Su-Han;Kim, Chung-H.;Kang, Suk-H.;Lim, Jae-L.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.735-741
    • /
    • 2010
  • A pilot test was carried out to investigate the long term operation characteristics of Microfiltration (MF) system as a pretreatment for seawater reverse osmosis (SWRO) processes for two years. A commercialized MF module with pressurized operation type was used to filter seawater to remove particles which can foul reverse osmosis (RO) membrane. Silt Density Index (SDI) values of filtered seawater by the MF system were ranged from 0.14 to 1.79, which meet the SDI standard for RO feed water as depicted in previous literatures. Although the tested seawater is quite clean (i.e., dissolved organic cabon (DOC) concentration and turbidity were about 1 mg/l and less than 1 NTU, respectively) enough not to foul the MF membrane, steep increase in trans-membrane pressure (TMP) with a constant flux were observed over a whole operation period. A set of operation and water analysis data implies that the steep increase in TMP was resulted from iron and maganese fouling by the combination of metal corrosion by seawater and oxidation state by aeration and residual chlorine.

Ion Exchange Processes: A Potential Approach for the Removal of Natural Organic Matter from Water

  • Khan, Mohd Danish;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.70-80
    • /
    • 2018
  • Natural organic matter (NOM) is among the most common pollutant in underground and surface waters. It comprises of humic substances which contains anionic macromolecules such as aliphatic and aromatic compounds of a wide range of molecular weights along with carboxylic, phenolic functional groups. Although the concentration of NOM in potable water usually lies in the range of 1-10 ppm. Conventional treatment technologies are facing challenge in removing NOM effectively. The main issues are concentrated to low efficiency, membrane fouling, and harmful by-product formation. Ion-exchangers can be considered as an efficient and economic pretreatment technology for the removal of NOM. It not only consumes less time for pretreatment but also resist formation of trihalomethanes (THMs), an unwanted harmful by-product. This article provides a comprehensive review of ion exchange processes for the removal of NOM.

Glycerol Separation from Biodiesel Byproduct (바이오디젤 부산물로부터 글리세롤의 분리)

  • Yang, Young-Mi;Kim, Kwang-Je;Lee, Yongtaek
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.690-692
    • /
    • 2008
  • Pure glycerol could be obtained from a biodiesel byproduct by separation processes including neutralization, precipitation, and distillation. The contents of distilled glycerol through the above separation processes were measured and the results were compared according to experimental conditions such as acid concentration and precipitation temperature. Neutralization processes were carried out in the concentration range of 5~37 wt% hydrochloric acid, 5~95 wt% sulfuric acid, and 5~85 wt% phosphoric acid, respectively. Precipitation temperatures in neutralization were controlled in the range of 293~333 K. Higher values of the distilled glycerol content were obtained due to the salt removal in the pretreatment case of neutralization with 10 wt% sulfuric acid and precipitation of 313 K with 85 wt% phosphoric acid, respectively. The variations of acid concentration and precipitation temperature in pretreatment steps affected to some extent glycerol recovery from the biodiesel byproduct.

Design of Pretreatment Process in Cellulosic Ethanol Production (목질계 셀룰로오스 에탄올 생산공정에서 전처리과정의 설계)

  • Kim, Hyungjin;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.511-514
    • /
    • 2015
  • A pretreatment process of cellulose decomposition to a monosaccharide plays an important role in the cellulosic ethanol production using the lignocellulosic biomass. In this study, a cellulosic ethanol was produced by using acidic hydrolysis and enzymatic saccharification process from the lignocellulosic biomass such as rice straw, sawdust, copying paper and newspaper. Three different pretreatment processes were compared; the acidic hydrolysis ($100^{\circ}C$, 1 h) using 10~30 wt% of sulfuric acid, the enzymatic saccharification (30 min) using celluclast ($55^{\circ}C$, pH = 5.0), AMG ($60^{\circ}C$, pH = 4.5), and spirizyme ($60^{\circ}C$, pH = 4.2) and also the hybrid process (enzymatic saccharification after acidic hydrolysis). The yield of cellulosic ethanol conversion with those pretreatment processes were obtained as the following order : hybrid process > acidic hydrolysis > enzymatic saccharification. The optimum fermentation time was proven to be two days in this work. The yield of cellulosic ethanol conversion using celluclast after the acidic hydrolysis with 20 wt% sulfuric acid were obtained as the following order : sawdust > rice straw > copying paper > newspaper when conducting enzymatic saccharification.

A Study on the Treatment of Dyeing Wastewater Using TiO₂/H₂O₂/UV Processes (TiO₂/H₂O₂/UV 공정을 이용한 염색폐수처리에 관한 연구)

  • Jo, Il Hyeong;Jeong, Hyo Jun;Park, Gyeong Ryeol;Seong, Gi Seok;Lee, Yong Gyu;Lee, Hong Geun
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.27-27
    • /
    • 2000
  • In order to treat the dyeing wastewater, the UV/TiO₂/H₂O₂ system was investigated, and proper pretreatment methods were examined to reduce the load on the system considering economical and technical efficiency. The results of this study were as follows: 1.UV/TiO₂/H₂O₂ system with pretreatment process was adopted, the result of Chemical coagulation and pH control units was pH 11→ coagulation → pH 4 and the optimum dosage of FeCl₃ was 600㎎/ℓ 2. Proper dosage of TiO₂in the UV/TiO₂/H₂O₂ system with pretreatment process was 2g/ℓ and H₂O₂ was 1000㎎/ℓ, UV contact time was 20min to get below 200㎎/ℓ of $COD_{Cr}$

A Study on the Treatment of Dyeing Wastewater Using $TiO_2/H_2O_2/UV$ Processes ($TiO_2/H_2O_2/UV$ 공정을 이용한 염색폐수처리에 관한 연구)

  • 조일형;정효준;박경렬;성기석;이용규;이홍근
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.26-34
    • /
    • 2000
  • In order to treat the dyeing wastewater, the $UV/TiO_2/H_2O_2$ system was investigated, and proper pretreatment methods were examined to reduce the load on the system considering economical and technical efficiency. The results of this study were as follows: 1. $UV/TiO_2/H_2O_2$ system with pretreatment process was adopted, the result of Chemical coagulation and pH control units was $pH{\;}11{\;}{\rightarrow}{\;}coagulation{\;}{\rightarrow}{\;}pH{\;}4$ and the optimum dosage of $FeCl_3$ was $600mg/{\ell}$. 2. Proper dosage of $TiO_2$ in the $UV/TiO_2/H_2O_2$ system with pretreatment process was $2g/{\ell}$ and $H_2O_2$ was $1000mg/{\ell}$, UV contact time was 20min to get $200mg/{\ell}$ of $COD_{Cr}$.

  • PDF

Improvement Particle and Physical Characteristics Applying of The Pretreatment Process System of Coal Gasification Slag and It's Verification Based on Statistical Approach (석탄 가스화 용융 슬래그의 전처리 공정 시스템 적용에 따른 입자 및 물리적 특성 개선 및 통계적 검증)

  • Kim, Jong;Han, Min-Cheol;Han, Jun-Hui
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.285-292
    • /
    • 2022
  • The objective of this study is to investigate whether CGS generated in IGCC satisfies the fine aggregate quality items specified in KS F 2527(Concrete Aggregate) through the pretreatment process system and the quality improvement the system. The statistical significance of the pretreatment process was analyzed through Repeated Measurements ANOVA as measured values according to individually pretreatment process system. As a result of the analysis, In the case of CGS fine aggregate quality before and after the pretreatment process system, the density increased 5.2 %, the absorption rate decreased by 1.86 %, the 0.08 mm passing ratio decreased by 2.25 %, and Fineness Modulus and Particle-size Distribution were also found to be adjustable. It was found that the pretreatment process system was significant in improving the quality of CGS.

A study on mitigation of membrane fouling by ozonation/coagulation in ultrafiltration (오존산화/응집 혼성공정에 의한 UF 분리막의 막오염 저감에 관한 연구)

  • Kim, Geon-Youb;Kim, Min-Gue;Lee, Chang-Ha;Kim, Hyung-Soo;Kim, Ji-Hoon;Lee, Kyung-Il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.2
    • /
    • pp.161-168
    • /
    • 2017
  • Microfiltration (MF) and Ultrafiltration (UF) membrane processes capable of producing highly purified water have been extensively applied as a pretreatment process in the wastewater reuse field with the improvement of membrane properties and resistance, development of operating protocols, and improvement of technologies of backwashing and physicochemical cleaning, and improvement of scale and antifoulants. However, despite of the development of membrane production and process technologies, fouling still remains unresolved. This study confirmed that foulants such as polysaccharides, proteins and humic substances existed in final treated effluent (secondary effluent) by fluorescence excitation emission matrix (FEEM) and fourier transform infrared spectroscopy (FTIR) analysis. In addition, when constructing ozone oxidation and coagulation processes as a hybrid process, the removal efficiency was 5.8%, 6.9%, 5.9%, and 28.2% higher than that of the single process using coagulation in turbidity, color, dissolved organic carbon (DOC), and UV254, respectively. The reversible and irreversible resistances in applying the hybrid process consisting of ozone oxidation and coagulation processes were lower than those in applying ozone oxidation and coagulation processes separately in UF membrane process. Therefore, it is considered possible to apply ozonation/coagulation as a pretreatment process for stable wastewater reuse by and then contributing to the reduction of fouling when calculating the optimal conditions for ozone oxidation and coagulation and then to applying them to membrane processes.

An Overview of the Pretreatment Processes in Seawater Desalination Plants using Reverse Osmosis Membranes (역삼투막을 이용한 해수담수화 플랜트에서 전처리 공정 기술)

  • Ahn, Chang Hoon;Lee, Wonil;Yoon, Jeyong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.811-823
    • /
    • 2009
  • Seawater desalination process using a reverse osmosis (RO) membrane has been considered as one of the most promising technologies in solving the water scarcity problems in many arid regions around the world. To protect RO membrane in the process, a thorough understanding of the pretreatment process is particularly needed. Seawater organic matters (SWOMs) may form a gel layer on the membrane surface, which will increase a concentration polarization. As the SWOMs can be utilized as a substrate, membrane biofouling will be progressed on the RO membrane surface, resulting in the flux decline and increase of trans-membrane pressure drop and salt passage. In the middle of disinfection, an optimal chlorine dosage and neutralizer (sodium bisulfite, SBS) should be practiced to prevent oxidizing the surface of RO membranes. Additional fundamental research including novel non-susceptible biofouling membranes would be necessary to provide a guide line for the proper pretreatment process.