• Title/Summary/Keyword: Pretreatment System

Search Result 588, Processing Time 0.031 seconds

Activation of Pro-Apoptotic Multidomain Bcl-2 Family Member Bak and Mitochondria-Dependent Caspase Cascade are Involved in p-Coumaric Acid-Induced Apoptosis in Human Jurkat T Cells (p-Coumaric acid에 의해 유도되는 인체 Jurkat T 세포의 에폽토시스 기전)

  • Lee, Je-Won;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1678-1688
    • /
    • 2011
  • The apoptogenic effect of p-coumaric acid, a phenolic acid found in various edible plants, on human acute leukemia Jurkat T cells was investigated. Exposure of Jurkat T cells to p-coumaric acid (50-$150{\mu}M$) caused cytotoxicity and TdT-mediated dUTP nick-end labeling (TUNEL)-positive apoptotic DNA fragmentation along with Bak activation, ${\Delta}{\psi}m$ loss, activation of caspase-9, -3, -7, and -8, and PARP degradation in a dose-dependent manner. However,these apoptotic events were completely abrogated in Jurkat T cells overexpressing Bcl-2.Under these conditions, necrosis was not accompanied. Pretreatment of the cells with the pan-caspase inhibitor (z-VAD-fmk) could prevent p-coumaric acid-induced sub-$G_1$ peak representing apoptotic cells, whereas it failed to block ${\Delta}{\psi}m$ loss, indicating that the activation of caspase cascade was prerequisite for p-coumaric acid-induced apoptosis as a downstream event of ${\Delta}{\psi}m$ loss. FADD- and caspase-8-positive wild-type Jurkat T cell clone A3, FADD-deficient Jurkat T cell clone I2.1, and caspase-8-deficient Jurkat T cell clone I9.2 exhibited similar susceptibilities to the cytotoxicity of p-coumaric acid, excluding an involvement of Fas/FasL system in triggering the apoptosis. The apoptogenic activity of p-coumaric acid is more potent in malignant Jurkat T cells than in normal human peripheral T cells. Together, these results demonstrated that p-coumaric acid-induced apoptogenic activity in Jurkat T cellswas mediated by Bak activation, ${\Delta}{\psi}m$ loss, and subsequent activation of multiple caspases such as caspase-9, -3, -7, and-8, and PARP degradation, which could be regulated by anti-apoptotic protein Bcl-2.

Effect of xylobiose-sugar mixture on defecation frequency and symptoms in young women with constipation (자일로바이오스를 함유한 설탕이 젊은 여성의 변비 개선에 미치는 효과)

  • Lee, Jung-Sug;Kim, A-Reum;Nam, Hye-kyoung;Kyung, Myungok;Jo, Sung-Eun;Chang, Moon-Jeong
    • Journal of Nutrition and Health
    • /
    • v.50 no.1
    • /
    • pp.41-52
    • /
    • 2017
  • Purpose: The objective of the study was to investigate the effects of xylobiose-sugar mixture intake on defecation frequency and constipation symptoms in 31 young women with constipation. Methods: Thirty-one subjects were assigned to two groups, and subjects in each group were administered 10 g of a 7% xylobiose-sugar mixture (Experiment 1: XBS, n = 15) or 10 g of a 7% xylobiose-sugar mixture containing coffee mix (Experiment 2: XBS coffee mix, n = 16) twice per day for 6 weeks. During the study, clinical efficacy was assessed by a daily diary record. The subjects recorded their defecation frequency and fecal characteristics. Results: During pretreatment week, mean defecation frequency of XBS subjects was 2.13 times/week, whereas that of XBS coffee mix subjects was 1.56 times/week. The mean defecation frequencies of XBS and XBS coffee mix subjects increased significantly to 3.73 times/week (p < 0.05) and 3.56 times/week by week 6 (p < 0.05), respectively. After treatment with either XBS or XBS coffee mix, patients presented significant improvements in their amounts of stool, feelings of residual stool leftness, and abdominal pain symptoms (p < 0.05). The total constipation scoring system (CSS) for diagnosing constipation symptoms significantly decreased in the XBS group (10.53 score vs 7.22 score) and in the XBS coffee mix group (10.75 score vs 6.51 score) after 6 weeks. Improvement due to intake of 7% xylobiose-containing sugar seemed to last during the experimental period. Conclusion: The addition of approximately 7% xylobiose to commercially available sweeteners has been shown to improve constipation.

Relationship between Reactive Oxygen Species and Adenosine Monophosphate-activated Protein Kinase Signaling in Apoptosis Induction of Human Breast Adenocarcinoma MDA-MB-231 Cells by Ethanol Extract of Citrus unshiu Peel (진피 추출물에 의한 인간유방암 MDA-MB-231 세포의 apoptosis 유도에서 ROS 및 AMPK의 역할)

  • Kim, Min Yeong;HwangBo, Hyun;Ji, Seon Yeong;Hong, Su-Hyun;Choi, Sung Hyun;Kim, Sung Ok;Park, Cheol;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.410-420
    • /
    • 2019
  • Citrus unshiu peel extracts possess a variety of beneficial effects, and studies on their anticancer activity have been reported. However, the exact mechanisms underlying this activity remain unclear. In the current study, the apoptotic effect of ethanol extract of C. unshiu peel (EECU) on human breast adenocarcinoma MDA-MB-231 cells and related mechanisms were investigated. The results showed that the survival rate of MDA-MB-231 cells treated with EECU was significantly inhibited in a concentration-dependent manner, which was associated with the induction of apoptosis. EECU-induced apoptosis was associated with the activation of caspase-8 and caspase-9, which initiate extrinsic and intrinsic apoptosis pathways, respectively, and caspase-3, a representative effect caspase. EECU suppressed the expression of the inhibitor of apoptosis family of proteins, leading to an increased Bax/Bcl-2 ratio and proteolytic degradation of poly (ADP-ribose) polymerase. EECU also enhanced the loss of the mitochondrial membrane potential and cytochrome c release from the mitochondria to the cytosol, along with truncation of Bid. In addition, EECU activated AMP-activated protein kinase (AMPK), and compound C, an AMPK inhibitor, significantly weakened EECU-induced apoptosis and cell viability reduction. Furthermore, EECU promoted the generation of reactive oxygen species (ROS), which acted as upstream signals for AMPK activation as pretreatment of cells, with the antioxidant N-acetyl cysteine reversing both EECU-induced AMPK activation and apoptosis. Collectively, these findings suggest that EECU inhibits MDA-MB-231 adenocarcinoma cell proliferation by activating intrinsic and extrinsic apoptotic pathways, which was mediated through ROS/AMPK-dependent pathways.

Ginsenoside compound K protects against cerebral ischemia/ reperfusion injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy

  • Qingxia Huang;Jing Li;Jinjin Chen;Zepeng Zhang;Peng Xu;Hongyu Qi;Zhaoqiang Chen;Jiaqi Liu;Jing Lu;Mengqi Shi;Yibin Zhang;Ying Ma;Daqing Zhao;Xiangyan Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.408-419
    • /
    • 2023
  • Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2 mediated mitochondrial dynamics and bioenergy.

Oxidative Inactivation of Peroxiredoxin Isoforms by H2O2 in Pulmonary Epithelial, Macrophage, and other Cell Lines with their Subsequent Regeneration (폐포상피세포, 대식세포를 비롯한 각종 세포주에서 H2O2에 의한 Peroxiredoxin 동위효소들의 산화에 따른 불활성화와 재생)

  • Oh, Yoon Jung;Kim, Young Sun;Choi, Young In;Shin, Seung Soo;Park, Joo Hun;Choi, Young Hwa;Park, Kwang Joo;Park, Rae Woong;Hwang, Sung Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.1
    • /
    • pp.31-42
    • /
    • 2005
  • Background : Peroxiredoxins (Prxs) are a relatively newly recognized, novel family of peroxidases that reduce $H_2O_2$ and alkylhydroperoxide into water and alcohol, respectively. There are 6 known isoforms of Prxs present in human cells. Normally, Prxs exist in a head-to-tail homodimeric state in a reduced form. However, in the presence of excess $H_2O_2$, it can be oxidized on its catalytically active cysteine site into inactive oxidized forms. This study surveyed the types of the Prx isoforms present in the pulmonary epithelial, macrophage, endothelial, and other cell lines and observed their response to oxidative stress. Methods : This study examined the effect of exogenous, excess $H_2O_2$ on the Prxs of established cell lines originating from the pulmonary epithelium, macrophages, and other cell lines, which are known to be exposed to high oxygen partial pressures or are believed to be subject to frequent oxidative stress, using non-reducing SDS polyacrylamide electrophoresis (PAGE) and 2 dimensional electrophoresis. Result : The addition of excess $H_2O_2$ to the culture media of the various cell-lines caused the immediate inactivation of Prxs, as evidenced by their inability to form dimers by a disulfide cross linkage. This was detected as a subsequent shift to its monomeric forms on the non-reducing SDS PAGE. These findings were further confirmed by 2 dimensional electrophoresis and immunoblot analysis by a shift toward a more acidic isoelectric point (pI). However, the subsequent reappearance of the dimeric Prxs with a comparable, corresponding decrease in the monomeric bands was noted on the non-reducing SDS PAGE as early as 30 minutes after the $H_2O_2$ treatment suggesting regeneration after oxidation. The regenerated dimers can again be converted to the inactivated form by a repeated $H_2O_2$ treatment, indicating that the protein is still catalytically active. The recovery of Prxs to the original dimeric state was not inhibited by a pre-treatment with cycloheximide, nor by a pretreatment with inhibitors of protein synthesis, which suggests that the reappearance of dimers occurs via a regeneration process rather than via the de novo synthesis of the active protein. Conclusion : The cells, in general, appeared to be equipped with an established system for regenerating inactivated Prxs, and this system may function as a molecular "on-off switch" in various oxidative signal transduction processes. The same mechanisms might applicable other proteins associated with signal transduction where the active catalytic site cysteines exist.

Circulating Cytokine Levels and Changes During the Treatment in Patients with Active Tuberculosis in Korea (결핵 환자의 치료경과 중 혈청 내 Cytokine 분비와 변화)

  • Ryu, Yon-Ju;Kim, Yun-Jung;Kwon, Jung-Mi;Na, Youn-Ju;Jung, Yu-Jin;Seoh, Ju Young;Cheon, Seon Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.2
    • /
    • pp.140-153
    • /
    • 2003
  • Background : The cell-mediated immune reaction to tuberculosis infection involves a complex network of cytokines. The extent of inflammation, tissue damage and severity of the disease suggested to be determined by the balance between extent and duration of the proinflammatory cytokine response versus those of the suppressive cytokines. The systemic cytokine response in pathogenesis of tuberculosis can be assessed by measuring serum cytokine levels. Method : Serum interleukin-1 beta(IL-$1{\beta}$), IL-2, IL-4, IL-6, IL-10, IL-12(p40), tumor necrosis factor-alpha(TNF-${\alpha}$), interferon-gamma(IFN-${\gamma}$) and transforming growth factor-beta(TGF-${\beta}$) levels were measured in 83 patients with pulmonary tuberculosis, 10 patients with endobronchial tuberculosis before treatment and 20 healthy subjects by using a sandwich ELISA. In patients with pulmonary tuberculosis, they were divided into mild, moderate and far advanced group according to the severity by ATS guidelines. To compare with those of pretreatment levels, we measured serum IL-$1{\beta}$, IL-2, IL-4, IL-6, IL-10, IL-12(p40), TNF-${\alpha}$, IFN-${\gamma}$ and TGF-${\beta}$ levels in 45 of 83 patients with pulmonary tuberculosis after 2 and 6 months of treatment. Results : 1) In sera of patients with active pulmonary tuberculosis(n=83), IL-$1{\beta}$, IL-6(p<0.05), TNF-${\alpha}$, and IFN-${\gamma}$ were elevated and TGF-${\beta}$ was decreased comparing to control. IL-2, Il-12(p40), IL-4 and IL-10 were similar between the patients with tuberculosis and control. 2) In endobronchial tuberculosis, IL-6 and TNF-${\alpha}$ were elevated and TGF-${\beta}$ was decreased comparing to control. IL-12(p40) seemed to be elevated comparing to pulmonary tuberculosis. 3) Far advanced tuberculosis showed markedly elevated IL-6 and IFN-${\gamma}$ level(p<0.05). 4) The significant correlations were noted between IL-1, IL-6 AND TNF-${\alpha}$ and between IL-12, Il-2 and IL-4(p<0.01). 5) After 2 and 6 months of standard treatment, the level of IL-6 and IFN-${\gamma}$ was significantly decreased(p<0.05). Conclusion : These results showed that an altered balance between cytokines is likely to be involved in the extent of inflammation, tissue damage and severity of the disease tuberculosis. But, it should be considered diversities of cytokine response according to type of tuberculosis and immunity in clinical application and interpreting future studies.

Muc5ac Gene Expression Induced by Cigarette Smoke is Mediated Via a Pathway Involving ERK1/2 and p38 MAPK (담배 연기에 의한 Muc5ac 유전자 발현에 관여하는 세포 내 신호 전달 경로로서의 ERK1/2와 p38 MAPK)

  • Kim, Yong Hyun;Yoon, Hyoung Kyu;Kim, Chi Hong;Ahn, Joong Hyun;Kwon, Soon Seog;Kim, Young Kyoon;Kim, Kwan Hyoung;Moon, Hwa Sik;Park, Sung Hak;Song, Jeong Sup;Cho, Kyung Sook
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.6
    • /
    • pp.590-599
    • /
    • 2005
  • Object : Cigarette smoking is a major cause of mucus hypersecretion, which is a pathophysiological feature of many inflammatory airway diseases. Mucins, which are an important part of the airway mucus, are synthesized from the Muc gene in airway epithelial cells. However, the signaling pathways for cigarette smoke-induced mucin synthesis are unknown. The aim of this study was to determine the signal pathway for smoking induced Muc5ac gene expression. Methods : A549 cells were cultured and transiently transfected with the Muc5ac promoter fragment. These cells were stimulated with 5% cigarette smoke extract (CSE) alone or with CSE after a pretreatment with various signal transduction pathway inhibitors (AG1478, PD98059 and SB203580). The Muc5ac promoter activity was examined using the luciferase reporter system, and the level of phosphorylated EGFR, ERK1/2, p38 MAPK and JNK were all examined using Western blot analysis. Muc5ac mRNA expression was also examined using reverse transcriptase polymerase chain reactions (RT-PCR). Results : 1. The peak level of luciferase activity of the Muc5ac promoter was observed at 5% concentration and after 3 hours of incubation with the CSE. The level of EGFR phosphorylation and the luciferase activity of the transfected cells caused by the CSE were significantly suppressed by AG1478 or PD98059 (P<0.01). 2. CSE phosphorylated ERK1/2 or p38 MAPK but not JNK. The Muc5ac mRNA expression level was increased by the CSE but that was suppressed by PD98059 or AG1478. 3. The CSE-induced phosphorylation of ERK1/2 was blocked by PD98059 and that of p38 MAPK was blocked by either PD98059 or SB203580. Either PD98059 or SB203580 suppressed the luciferase activity of the transfected cells (P<0.0001). Conclusion : The Muc5ac mRNA expression level was increased by the CSE. The increased CSE-induced transcriptional activity was mediated via EGF receptor activation, which led to ERK1/2 and p38 MAPK phosphorylation.

The Application of 3D Bolus with Neck in the Treatment of Hypopharynx Cancer in VMAT (Hypopharynx Cancer의 VMAT 치료 시 Neck 3D Bolus 적용에 대한 유용성 평가)

  • An, Ye Chan;Kim, Jin Man;Kim, Chan Yang;Kim, Jong Sik;Park, Yong Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.41-52
    • /
    • 2020
  • Purpose: To find out the dosimetric usefulness, setup reproducibility and efficiency of applying 3D Bolus by comparing two treatment plans in which Commercial Bolus and 3D Bolus produced by 3D Printing Technology were applied to the neck during VMAT treatment of Hypopahrynx Cancer to evaluate the clinical applicability. Materials and Methods: Based on the CT image of the RANDO phantom to which CB was applied, 3D Bolus were fabricated in the same form. 3D Bolus was printed with a polyurethane acrylate resin with a density of 1.2g/㎤ through the SLA technique using OMG SLA 660 Printer and MaterializeMagics software. Based on two CT images using CB and 3D Bolus, a treatment plan was established assuming VMAT treatment of Hypopharynx Cancer. CBCT images were obtained for each of the two established treatment plans 18 times, and the treatment efficiency was evaluated by measuring the setup time each time. Based on the obtained CBCT image, the adaptive plan was performed through Pinnacle, a computerized treatment planning system, to evaluate target, normal organ dose evaluation, and changes in bolus volume. Results: The setup time for each treatment plan was reduced by an average of 28 sec in the 3D Bolus treatment plan compared to the CB treatment plan. The Bolus Volume change during the pretreatment period was 86.1±2.70㎤ in 83.9㎤ of CB Initial Plan and 99.8±0.46㎤ in 92.2㎤ of 3D Bolus Initial Plan. The change in CTV Min Value was 167.4±19.38cGy in CB Initial Plan 191.6cGy and 149.5±18.27cGy in 3D Bolus Initial Plan 167.3cGy. The change in CTV Mean Value was 228.3±0.38cGy in CB Initial Plan 227.1cGy and 227.7±0.30cGy in 3D Bolus Initial Plan 225.9cGy. The change in PTV Min Value was 74.9±19.47cGy in CB Initial Plan 128.5cGy and 83.2±12.92cGy in 3D Bolus Initial Plan 139.9cGy. The change in PTV Mean Value was 226.2±0.83cGy in CB Initial Plan 225.4cGy and 225.8±0.33cGy in 3D Bolus Initial Plan 224.1cGy. The maximum value for the normal organ spinal cord was the same as 135.6cGy on average each time. Conclusion: From the experimental results of this paper, it was found that the application of 3D Bolus to the irregular body surface is more dosimetrically useful than the application of Commercial Bolus, and the setup reproducibility and efficiency are excellent. If further case studies along with research on the diversity of 3D printing materials are conducted in the future, the application of 3D Bolus in the field of radiation therapy is expected to proceed more actively.