• Title/Summary/Keyword: Pretensioned spun High strength Concrete

Search Result 15, Processing Time 0.024 seconds

An Experimental Study of the Segregated Layers of Materials for Pretensioned Spun High Strength concrete Pile (PHC 파일의 재료분리층에 대한 실험연구)

  • 이성로;강성수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.148-152
    • /
    • 2000
  • The experimental study was performed to investigate the effects of centrifugal condition on the segregated layers of materials and the compressive strength of concrete for pretensioned spun high strength concrete (PHC) pile. The considering factors in the test were the centrifugal time and the magnitude of centrifugal force. These factors have been found to have found to have the great influence on the segregation and the concrete strength. The moderate centrifugal condition has to be fitted for the quality assurance in the production of PHC pile, especially to provide the adequate concrete cover over the tendons.

  • PDF

Experimental Study on Segregated Layers of Materials and Compressive Strength of Concrete for Pretensioned Spun High Strength Concrete Pile (PHC 파일의 압축강도와 재료분리층에 대한 실험연구)

  • 이성로;강성수;유성원
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • Pretensioned spun high strength concrete (PHC) pile has to be quality-controlled and provided an adequate concrete cover to assure high load carrying capacity, impact resistance, economy, and durability. During spun pre-casting, the pile section is divided into several segregated layers such as laitance, paste, mortar, and concrete layers. Greater the thickness of segregated layers, more difficult it is to guarantee the capacity and the durability of PHC pile. The experimental study was performed to investigate the effects of centrifugal condition on the segregated layers of materials and the compressive strength of concrete for PHC pile. The considering factors in the test were centrifugal time and magnitude of centrifugal force. These factors have been found to have greater influence on the segregation than the concrete strength. The moderate centrifugal condition has to be considered to maintain quality assurance in the production of PHC pile, especially to provide the adequate concrete cover over its tendons.

A Study on the Mechanical Properties of HPC Pile Using Steel Fiber (강섬유를 혼입한 HPC Pile의 역학적 특성에 관한 연구)

  • 박승범;신동기;박병철;권혁준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.365-372
    • /
    • 1997
  • This study is aimed for manufacturing a High performance Concrete(HPC) Pile as using steel fibers, investigation the mechanical properties of HPC Pile and proposition the potential application. At this study. We found that mechanical properties(cracking moment and fracture moment) of Pretensioned spun High strength Concrete (PHC) Pile using steel fibers is much superior to without steel fibers. Therefore. we think that using steel fibers in Concrete Pile is to progress flexural strength energy absorption capacity and post-cracking resistance.

  • PDF

An Experimental Study on the Hydration and Mechanical Properties of High Strength Concrete with High Calcium Sulfate Cement (고황산염시멘트를 이용한 고강도콘크리트의 수화 및 역학적 특성에 관한 실험적 연구)

  • 박승범;임창덕
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.1
    • /
    • pp.129-138
    • /
    • 1993
  • 프리텐션 방식 원심력 고강도 콘크리트 말뚝[KS F 4306]제조에 관한 실험적 연구로써 고황산염시멘트를 이용한 800kg/$ extrm{cm}^2$이상의 고강도콘크리트 제조시 수화 특성검토와 콘크르트 조직내의 기공율과 압축강도간의 상관식을 도출하여 고강도 발현기구를 규명하였으며 콘크리트 압축 및 휨강도간의 상관식 유도와 내구성 측면에서의 내동해성, 건조수축, 화학저항성등을 보통 포틀랜드 시멘트와 비교 고찰한 결과, 고황상염시멘트의 내구성이 우수함을 확인하였다.

A Study on Flexural Behavior of Composite PHC pile with CT Structural Steel (PHC파일과 CT형강을 합성한 합성형 벽체파일의 휨거동에 대한 연구)

  • Mha, Ho-Seong;Won, Jeong-Hun;Cho, Hyo-Sang
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.233-243
    • /
    • 2012
  • This study verifies the structural capacity of the composite PHC pile (Pretensioned spun high-strength concrete) consisting of a PHC pile and two CT structural steels. Four full-scale specimens are fabricated and the experimental tests were performed to investigate the flexural behaviors of the composite PHC piles. The composite PHC pile can enhance both the structural capacity and functional convenience, since the web of CT structural steel with holes in the web acts as a shear connector (referred to as the perfobond rib), which can connect concrete and steel. All specimens exhibited flexural failure and the ultimate strengths were larger than the anticipated design strength according to the design standard. Thus, the composite PHC pile can be applicable to wall structures with sufficient strength. In addition, it seems that the web of the CT structural steel with holes performs its role as shear connectors.

Development & Performance Evaluation of Ground Heat Exchanger Utilizing PHC Pile Foundation of Building (PHC 파일 기초를 이용한 지중 열교환기 개발 및 성능 평가)

  • Yu, Hyung-Kyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.56-64
    • /
    • 2008
  • The objective of this study is to develope ground heat exchanger using PHC file used to building foundation, and it's element technology. So we construct PHC ground heat exchanger in the apartment house's PHC foundation and evaluate it's performance. First, we study PHC file type, heat exchanger pipe, grouting materials, and present apartment house's foundation condition for PHC ground heat exchanger and design it's proto type. Second according to grouting materials, we estimate construction convenience, and it's performance. Construction convenience side, PB 22 A pipe and sand grouting with moisture was good for PHC ground heat exchanger elements. Experiment result is very superior. Thermal conductivity B, C type(sand, gravel) was respectively 32.4 W/m$^{\circ}C$, 36.5 W/m$^{\circ}C$, D(concrete) Type 27.8 W/m$^{\circ}C$, E(bentonite) Type 19.6 W/m$^{\circ}C$. Thermal interference for 4 day experiment period in 3.8 m was very small. So PHC file is good for using ground heat exchanger.

Shear Experiments on Concrete Filled PHC Pile with Composite Shear Connectors with Rebar Holes (보강 철근 정착 홀을 갖는 합성 전단연결재를 적용한 콘크리트 충전 PHC말뚝의 전단성능 평가)

  • Kim, Jeong-Hoi;Park, Young-Shik;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.259-266
    • /
    • 2017
  • The purpose of this study was to contribute to the field application cost effectively and reasonably by developing the functional piles that reinforces shear force. CFP pile (Concrete Filled Pretensioned Spun High Strength Concrete Pile with Ring type Composite shear connectors) developed in this study increases the shear stress by placing composite shear connector and filling the concrete into hollow part of the pile. By placing the reinforcement (H13-8ea) and the reinforcement (H19-8ea) into hollow section inside of PHC piles, it also improves the shear strength due to increasing steel ratio. It reinforces shear strength effectively by dowel force that is generated by putting reinforcement (H13-8) into the holes of composite shear connectors for the composite behavior of filled concrete and PHC pile. The study was reviewed and compared the calculated result of the shear strength by limit state design method highway bridge design standards (2012) and experiment result of the shear strength by KS F 4306. We can design the shear strength reasonably as the safety ratio of 2.20, 2.15, 2.05 is shown comparing to design shear strength, according to design shear strength on each cross sections and the experiment results of the CFP pile.

Flexural Design and Experiments on Reinforced Concrete Filled PHC Pile (철근 콘크리트 충전 PHC말뚝의 휨 설계 및 성능 평가)

  • Kim, Jeong-Hoi;Jung, Hae-Kwang;Park, Young-Shik;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.353-360
    • /
    • 2017
  • The objective of this study is theoretical and empirical evaluation of the flexural performance of concrete filled pretensioned spun high strength concrete pile with ring type composite shear connectors (CFP pile). The specimens are comprised of standard CFP pile, PHC pile+composite shear connector+filed concrete (CFP-N-N), standard CFP pile with $1^{st}$ reinforcements (H13-8ea), and standard CFP pile with $1^{st}$ and $2^{nd}$ reinforcements(H19-8ea). Flexural performance evaluation results showed that the ductility is improved with increased steel ratio, which leads to the increased maximum load by 46.4% (with $1^{st}$ reinforcement) and 103.9% (with $1^{st}$ and $2^{nd}$ reinforcements) compared to standard CFP ( CFP-N-N). Comparing with the predicted ultimate limit state values of the CFP pile design method and the experimental results, the design method presented in this study is reasonable since safety factor of 1.23 and 1.40 times for each reinforcement step are secured.

Stress Reducing Method in the Connection Area with Pier due to the Torsion of the Girder of Fish-bone Type Bridge (경골형 교량거더의 비틀림에 의한 말뚝연결부 응력저감기법)

  • Kim, Jae-Heong;Yun, Kyung-Min;Yoon, Ki-Yong;Lee, Chin-Ok;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2399-2405
    • /
    • 2014
  • A fish-bone type bridge is vulnerable to the torsional behavior due to the single girder system with planar zigzag conformation. The fixed connecting area between the girder and pier is the special weak point because the torsional load creates excessive stress concentration. Therefore, the method to reduce the stress concentration is required. In this study, the reduction efficiency of various reinforcing types to reduce the excessive stress occurring at the connecting area is evaluated by using numerical analyses.