• Title/Summary/Keyword: Prestressing Force

Search Result 189, Processing Time 0.021 seconds

Buckling of post-tensioned composite beams

  • Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.113-123
    • /
    • 1994
  • A method for computing the elastic buckling prestressing force of a post-tensioned composite steel-concrete tee-beam is presented. The method is based on a virtual work formulation, and incorporates the restraint provided by the concrete slab to the buckling displacements of the steel beam. The distortional buckling solutions are shown to be given by a quadratic equation. The application of the analysis to calculation buckling strengths is given, based on codified rules for beam-columns. Conclusions are then drawn on the importance of distortional buckling when a post-tensioned composite beam is stressed during jacking.

Tests on Transfer Bond Performance of Epoxy Coated Prestressing Strands (에폭시 코팅 처리된 PS강선의 정착부착성능 실험)

  • 유승룡
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.89-100
    • /
    • 1994
  • The current test procedure for transfer length, which determine transfer length by measuring concrete strain, has an actual bond stress state in the prestressed pretensioned member : however, it is difficult to determine the bond properties of maximum bond stress and bond stiffness with this method. It is also difficult for design engineer to understand and select a correct safety criterion from the widely distributed results of such a ransfer test alone. An alternative testing procedure is provided here to determine the bond properties without measuring the concrete strain. In this test the bond stress is measured directly by creating a similar boundary condition within the transfer length in a real beam during the transfer of prestressing force. The prestressing force was released step by step by step from the unloading side. The release of force induces a swelling of the strand at the unloading side of concrete block, bonding force in the block, and a bond slip of the strand toward the other side of the block. Two center-hole load cells are used to record the end loads until the point of general bond slip(maximum bond stress). It is suggested that this test procedure be performed with the ordinary transfer test when determining the transfer length in a prestressed, pretensioned concrete beam.

Evaluation on the Lost Prestressing Force of an External Tendon Using the Combination of FEM and HGA: I. Theory (FEM과 HGA의 조합을 이용한 외부 긴장재의 손실 긴장력 평가: I. 이론)

  • Park, Taehyo;Jang, Hang-Teak;Noh, Myung-Hyun;Park, Kyu-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.109-120
    • /
    • 2009
  • This paper introduces a new method to estimate the loss of prestressing force for the externally prestressing tendon. The proposed method that combines of HGA and FEM is able to identify the lost tensile force of a externally prestressed tendon. The identification variables of the proposed method is a exteranlly prestressed tendon of tension, effective nominal diameter, mass per unit length and Rayleigh damping coefficients. First of all, a finite element model system is constructed to consider the effect of damping, and these variables are identified using inverse analysis technique - updating algorithm. Finally, throughout total 3 cases of numerical tests, the numerical propriety of the proposed method is verified. Here, it is seen that the errors in the estimated variables by the proposed method are about 1% except in the case of Rayleigh damping coefficients.

Multi-Stepwise Prestressing Method of Steel Structure Using Thermal-Expanded Cover-plate (커버플레이트의 온도변형을 이용한 강구조물의 다단계 프리스트레싱)

  • Kim, Sang Hyo;An, Jin Hee;Kim, Jun Hwan;Kim, Hyung Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.783-792
    • /
    • 2006
  • This study investigates developments in a prestressing method using the thermal-expanded cover-plates that increases the load-carrying capacity of structures by installing it on upper or lower flanges in case that huge flexural stiffness according to the increase in span length or load are required of steel structure, such as rolled H-beam or built-up beam. This method applies multi-stepwise contraction forces generated by the contraction of cover plates as prestressing forces after joining the cover plate applied by multi-stepwise thermal expansion that was applied to induce prestressing to structures. To perform a theoretical investigation of the prestressing force applied to a structure due to the thermal expansion and induce a multi-stepwise prestressing method using multi-stepwise thermal distribution, this study proposes a theoretical heat transfer solution for the multi-stepwise thermal distribution of cover plates and analyzes the effect of a multi-stepwise prestressing method using the multi-stepwise thermal expansion.

Prestressing Effect of LNG Storage Tank with 2,400 MPa High-Strength Strands (2,400 MPa급 고강도 강연선이 적용된 LNG 저장탱크의 프리스트레싱 효과)

  • Jeon, Se-Jin;Seo, Hae-Keun;Yang, Jun-Mo;Youn, Seok-Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.999-1010
    • /
    • 2016
  • High-strength strands have been increasingly applied to recent actual structures in Korea. Structural effect of the increased spacing of sheaths was investigated in this study when the usual 1,860 MPa strands of an LNG storage tank are replaced with 2,400 MPa high-strength strands. First, finite element models of a cylindrical wall of an LNG tank were established and prestressing effect of the circumferential and vertical tendons was considered as equivalent loads. As a result of varying the tendon spacing and prestressing force with the total prestressing effect kept the same, the stress distribution required in design was obtained with the high-strength strands. Also, a full-scale specimen that corresponds to a part of an LNG tank wall was fabricated with 31 high-strength strands with 15.2 mm diameter inserted in each of two sheaths. It was observed that such a high level of prestressing force can be properly transferred to concrete. Moreover, an LNG tank with the world's largest 270,000 kl capacity was modeled and the prestressing effect of high-strength strands was compared with that of normal strands. The watertightness specifications such as residual compressive stress and residual compression zone were also ensured in case of leakage accident. The results of this study can be effectively used when the 2,400 MPa high-strength strands are applied to actual LNG tanks.

Calculation model for layered glass

  • Ivica Kozar;Goran Suran
    • Coupled systems mechanics
    • /
    • v.12 no.6
    • /
    • pp.519-530
    • /
    • 2023
  • This paper presents a mathematical model suitable for the calculation of laminated glass, i.e. glass plates combined with an interlayer material. The model is based on a beam differential equation for each glass plate and a separate differential equation for the slip in the interlayer. In addition to slip, the model takes into account prestressing force in the interlayer. It is possible to combine the two contributions arbitrarily, which is important because the glass sheet fabrication process changes the stiffness of the interlayer in ways that are not easily predictable and could introduce prestressing of varying magnitude. The model is suitable for reformulation into an inverse procedure for calculation of the relevant parameters. Model consisting of a system of differential-algebraic equations, proved too stiff for cases with the thin interlayer. This novel approach covers the full range of possible stiffnesses of layered glass sheets, i.e., from zero to infinite stiffness of the interlayer. The comparison of numerical and experimental results contributes to the validation of the model.

Experimental Study of External Prestressing Strengthening Using Jacket-Base Anchorage System. (자켓-받침형 정착장치를 이용한 외부강선 보강 효과의 실험적 연구)

  • 김형규;양동석;박선규;곽수현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.457-462
    • /
    • 2002
  • Generally speaking, durability, load carrying capacity and the life of structure becomes to be shortened in all structures as time passed. Also, we have to repair and reinforce because of tile decrease of the traffic volume and overloaded vehicles in the bridge. External prestressing method is most popular and effective strengthening method which can be used for the prestressed concrete-girders. When strengthening with external prestressing method, there are many ways to install anchorage system. But, These methods have many faults. For example, the achorage force is so small or an anchorage system installation damages an existing structure. So, this paper suggested a new anchorage system to strengthen without any damage to the structure and then confirm the increase of durability and the properties of behavior with experimentation.

  • PDF

Research on the Application of Precast Deck to Continuous Bridges (프리캐스트 바닥판의 연속교 적용에 관한 연구)

  • 정철헌;심창수;윤석구;정운용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.573-578
    • /
    • 2001
  • In order to apply a precast deck to continuous composite bridges, several experiments and analytical studies were performed. Design criterion for crack prevention should be such that it does not permit tension at the joint to occur when the service loads are applied. Details of the shear pocket for studs and material properties of filler in the pocket and the joint are very important considerations in design and construction. Combination of longitudinal prestressing methods, internal tendon and prestressing after shear connection, should be used for prevention of cracking in continuous precast deck bridges. Design guides for the determination of prestressing force are suggested.

  • PDF

Derivation of Development Length in Pretensioned Prestressed Concrete Members (프리텐션공법의 프리스트레스트 콘크리트 부재의 정착길이 산정에 관한 실험 및 이론연구)

  • 오병환;김의성;최영철
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.3-11
    • /
    • 2000
  • In pretensioned concrete structures, bond between prestressing steel and concrete is an essential component to ensure the integrity of a pretensioned member. The anchorage and development of the prestressing force depend exclusively on bond. The purpose of this study is to investigate the characteristics of bond and development length between pretensioned steel and concrete. To resolve the controversy over the adequacy of the current code provision on development length of prestressing strands, a comprehensive test program has been scheduled and twenty four rectangular prestressed concrete beams have been tested to determine development length. Major test variables include diameter of strands (12.7mm, 15.2mm) and concrete covers (3cm, 4cm, 5cm). The test results indicate that the development length based on the bond stress-slip relation. The proposed model can evaluate realistically the development length of pretensioned prestressed concrete members and can be the good basis for the future basis of code equations on development length of PSC members.

Strengthening of steel-concrete composite beams with prestressed CFRP plates using an innovative anchorage system

  • Wan, Shi-cheng;Huang, Qiao;Guan, Jian
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.21-35
    • /
    • 2019
  • This study investigates the flexural behavior of steel-concrete composite beams strengthened with prestressed carbon fiber-reinforced polymer (CFRP) plates. An innovative mechanical anchorage system was developed. The components of the system can be easily assembled on site before applying a prestressing force, and removed from the structures after strengthening is completed. A total of seven steel-concrete composite specimens including four simply supported beams strengthened at the positive moment region and three continuous beams strengthened at the negative moment region were tested statically until failure. Experimental results showed that the use of prestressed CFRP plates enhanced the flexural capacity and reduced the mid-span deflection of the beams. Furthermore, by prestressing the CFRP laminates, the material was used more efficiently, and the crack resistance of the continuous composite specimens at the central support was significantly improved after strengthening. Overall, the anchorage system proved to be practical and feasible for the strengthening of steel-concrete composite beams. The theoretical analysis of ultimate bearing capacity is reported, and good agreement between analytical values and experimental results is achieved.