• Title/Summary/Keyword: Prestressing

Search Result 554, Processing Time 0.024 seconds

Structural analysis of a prestressed segmented girder using contact elements in ANSYS

  • Lazzari, Paula M.;Filho, Americo Campos;Lazzari, Bruna M.;Pacheco, Alexandre R.
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.319-327
    • /
    • 2017
  • Studying the structural behavior of prestressed segmented girders is quite important due to the large use this type of solution in viaducts and bridges. Thus, this work presents a nonlinear three-dimensional structural analysis of an externally prestressed segmented concrete girder through the Finite Element Method (FEM), using a customized ANSYS platform, version 14.5. Aiming the minimization of the computational effort by using the lowest number of finite elements, a new viscoelastoplastic material model has been implemented for the structural concrete with the UPF customization tool of ANSYS, adding new subroutines, written in FORTRAN programming language, to the main program. This model takes into consideration the cracking of concrete in its formulation, being based on fib Model Code 2010, which uses Ottosen rupture surface as the rupture criterion. By implementing this new material model, it was possible to use the three-dimensional 20-node quadratic element SOLID186 to model the concrete. Upon validation of the model, an externally prestressed segmented box concrete girder that was originally lab tested by Aparicio et al. (2002) has been computationally simulated. In the discretization of the structure, in addition to element SOLID186 for the concrete, unidimensional element LINK180 has been used to model the prestressing tendons, as well as contact elements CONTA174 and TARGE170 to simulate the dry joints along the segmented girder. Stresses in the concrete and in the prestressing tendons are assessed, as well as joint openings and load versus deflection diagrams. A comparison between numerical and experimental data is also presented, showing a good agreement.

Flexural Performance of Multistage Prestressed and Self-weight Preflex Girder (다단계 자중 프리플렉스 및 프리스트레싱 합성거더의 시공단계에 따른 휨성능 평가)

  • Choi, Byung Ho;Kim, Tae Bong;Park, Sung Kyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.311-321
    • /
    • 2017
  • This paper deals with the flexural performance of a composite girder system designed to readily form a composite section without a formwork and to easily realize multistage preflexing and prestressing. After a 3-Dimensional finite element modeling for construction stage analysis, the parametric numerical analysis was performed to analyse the stress distribution on the composite girder sections and the prestressing effects along with concrete pouring method and strand tensioning method. Based on the stress distribution analysis, a favorable construction stage model has been rationally chosen and then the ultimate flexural strengths were evaluated to conduct a comparative study, which exceed the nominal flexural strength suggested by the current design specification(ASD). It can be concluded that the proposed composite girder and fabrication procedure should have a sufficient structural performance.

Control of Prestressing Forces in a Splicing Method using the Partial Post-tensioning and Releasing Procedure (부분 긴장과 해제를 이용한 연속화 과정에서의 긴장력 조절)

  • 이환우;김광양
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.251-259
    • /
    • 2002
  • A new splicing technique by the secondary moment which is intentionally induced by the tensioning effect of continuous tendons and the releasing effect of temporary beam tendons was developed. The tensioning and releasing works are essential and the decisions of the magnitude and order about them may be important engineering problems in this technique. In this paper, it was studied lot the practically optimum procedure of the tensioning and releasing works. As the result, it is concluded that the gradual progress through the three stages is reasonable for the procedure and the tensioning work have to precede the releasing work. Additionally, the magnitude of preceding tensioning force should be obtained by the sensitivity analysis and the minimum limit is more critical than the minimum limit.

An Experimantal Study on Flexural Behavior of RC Beams Strengthened with Near Surface Mounted Prestressed FRP (프리스트레스를 도입한 FRP 표면매립 보강보의 휨거동에 관한 실험적 연구)

  • Hong, Sung-Nam;Park, Jun-Myung;Park, Sun-Kyu;Park, Jong-Sup;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.737-742
    • /
    • 2006
  • Strengthening concrete structures with fiber reinforced polymer materials have grown to be a widely used method over most parts of the world today, which FRP was developed in 1960. A method to apply prestressing force to FRP is developed newly in these days, which can use the maximum performance of FRP materials. This paper presents the results of a study on improvement in flexural capacities of RC beams strenthened with near surface mounted prestressed CFRP rod and plate. Experimental variables include type of CFRP, prestressing level. Tests show that prestressed beams exhibit a higher crack-load as well as a higher steel-yielding load compared to non-prestressed strengthened beams.

Analysis of Nonlinear Behavior and Reliability of PSSC Composite Girder Bridge (PSSC 합성거더 교량의 비선형 거동 분석 및 신뢰도 해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.158-166
    • /
    • 2008
  • Member force, strain and stress distribution of a section are obtained for prestressed steel and concrete(PSSC) composite bridge subjected to dead and live load in order to interpret the effect of prestressing and deformation of tendon. The stress and strain distribution and moment capacity are obtained for both noncomposite and composite section and for allowable stress limit state, yield limit state and strength limit state. Reliability analysis is conducted after assuming limit states for deflection, stress and flexural strength. Comparing that the reliability index for stress is near 0 for example section which is designed to satisfy the allowable stress exactly, the reliability indexes for deflection and flexural strength are high. Reliability of PSSC girder which is designed based on allowable stress of bridge design code is high for deflection and flexural strength.

Time-Dependent Behavior Analysis of Pre-Tensioned Members Using High-Performance Concrete(HPC) (고성능 콘크리트(HPC)를 사용한 프리텐션 부재의 시간의존거동 해석)

  • Nam, Yoo-Seok;Cho, Chang-Geun;Park, Moon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.479-487
    • /
    • 2006
  • This paper deals with a research about the time-dependent behavior analysis for pre-tensioned high-performance concrete(HPC) members. By improving AASHTO-LRFD(2004) method for predicting the creep and shrinkage of normal concrete, and the relaxation of prestressing tendon, a time-dependent behavior analysis of high-performance concrete structures has been introduced. Two methods, the step-function method and the time-step method have been incorporated in the time-dependent analysis. The developed program can predict the initial and time-dependent losses of prestressing forces and the deflections of high-performance concrete structures. The present model has been verified by comparing with the experimental results from the test of time-dependent behaviors of pre-tensioned members using high-performance concrete. From this, the current model gives good relations with the experimental results, but the AASHTO method is not good for the prediction of time-dependent behaviors of high-performance concrete members.

Flexural Behavior Characteristics of Steel I-Beam Strengthened by the Post-tensioning Method on the Field Experiment (현장실험을 통한 외부 후긴장 Steel I-Beam의 휨 거동 특성)

  • Cho, Doo-Yong;Park, Dae-Yul;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • Recently, the externally prestressed unbonded steel I-beam bridges have been increasingly built. The mechanical behavior of prestressed steel I-beams which are with external unbonded tendon is different from that of normal bonded PSC beams in a point of that the slip of tendons at deviators and the change of tendon eccentricity occurs, when external loads are applied in external unbonded steel I-beams. The concept of prestressing steel structures has not been widely considered, in spite of long and successful history of prestressing concrete members. In this study, The field experiment on prestressed steel I-beams has been performed in the various aspects of prestressed I-beam including the tend on type and profile.

An Experimental Study on Flexural Behavior in Framed Structure of P.S.T Method (P.S.T 공법 라멘 구조물의 휨 거동 특성에 관한 실험적 연구)

  • Cui, Jie;Yoon, Jong Nam;Eum, Ki Young;Hong, Sung Nam;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.144-152
    • /
    • 2011
  • The existing underground trenchless methods use reinforcing rod in steel tube to obtain structural stiffness. However, there are some problems such as inconvenience of work and expensive material fee which are resulted from limited working space and reinforcing work. To resolve these problems, a new trenchless method, namely P.S.T method (Prestressed Segment Tunnel Method), is developed which uses joint to connect the steel segment and form erection structure in underground construction. Further, installing strands for prestressing. In order to evaluate the flexural capacity of the P.S.T method structure, experiment was conducted. The parameters considered in the experiment are the span-to-depth ratio, diameter of steel tube at corner, prestressing force and welding of joint. Altogether examining the flexural behavior, the effect of deflection in structure according to different parameters has also been analysised.

The Flexural and Shear Behaviors of Steel-PSC Mixed Structural System with Front-Rear Plate Connection (전·후면판 공용방식 접합부를 갖는 강-PSC 혼합구조의 휨 및 전단거동)

  • Lho, Byeong-Cheol;Cho, Sung-Yong;Park, Hyun-Chul;Kim, Mun-Kyum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.201-212
    • /
    • 2007
  • This study presents experimental results of Steel-PSC mixed structural system having front-rear plate connection between Steel and Prestressed Concrete. Two kinds of Steel-PSC mixed structural system of 5.4m length were tested to evaluate flexural behaviors under four point loading, and 4 kinds of specimens with and without prestressing force at R & L type connection were tested to observe the shear behavior. Based on the test results of load-deflection curves and failure modes of specimens, it is found that the proposed L shape connection with front-rear plate connection between Steel and Prestressed Concrete has higher strength and stiffness. From the study, Steel-PSC mixed structural system with L shaped connection has a better structural performance in connection part.

Evaluation of Reinforcement Effect of Deteriorated PSC Beam through Cutting Its External Tendons (외부강선 파단실험을 통한 노후 PSC 교량의 보강효과 평가)

  • Park, Chang-Ho;Lee, Byeong-Ju;Lee, Won-Tae;Ku, Bon-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.178-186
    • /
    • 2005
  • In this study, the PSC girder bridge retrofitted with external tendons is tested to verify the strengthening effects. We measure the variations of the displacement and strain at mid-span of each beam as external tendons are removed in sequence. The structural behavior of the bridge are examined using controlled truck load tests for the systems before and after all external tendons were removed. From the test results, the characteristics of structural behavior of the bridge do not change significantly, but the natural frequency is decreased after the external tendons are removed. The strengthening effects of bridges can be exactly estimated by analytical methods some extent. As a result of this study, when a PSC girder bridge is deteriorated, the bridge can be retrofitted effectively by External Prestressing Strengthening Method, and the strengthening effects can be predicted through accurate structural analysis.