• Title/Summary/Keyword: Prestressed Die

Search Result 11, Processing Time 0.019 seconds

A Study on the Design of the Prestressed Precision Cold Forging Die (예압된 정밀 냉간단조 금형설계에 관한 연구)

  • Yeo, H. T.;Choi, Y.;Hur, K. D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.377-380
    • /
    • 2000
  • The dimensional accuracy of the cold forged part is depended on the elastic characteristics of the die. To obtain the high stiffness of the prestressed die, the first stress ring of the tungsten carbide material is considered. For the design, Lam 's equation is used. The design of the prestressed die has been compared with the conventional that. For the comparison, the FE-analysis using ANSYS has been performed. The results indicate that the prestressed die with the high stiffness can be obtained by the using the high stiffness material as the first stress ring.

  • PDF

The Effect of Stress Ring for the Design of Precision Cold Forging Die (정밀 냉간단조 금형설계를 위한 보강링의 영향)

  • Hur, Kwan-Do;Choi, Young;Yeo, Hong-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.145-151
    • /
    • 2001
  • The dimensional accuracy of the cold forged part is depended on the elastic characteristics of the die. To increase the stiffness of the prestressed die, the first stress ring of the tungsten carbide alloy (WC) is considered. For the design, Lame's equation is used. Diameter ratios and interferences have been determinated by maximum inner pressure without yielding of materials. The design of the prestressed die has been compared with the conventional one. For the comparison, the FE-analysis using ANSYS has been performed. The results indicate that the prestressed die with the high stiffness can be obtained by the using the high stiffness material as the first stress ring.

  • PDF

Stress Analysis of the Prestressed Dies by Using FEM (유한요소법을 이용한 예압된 금형의 응력해석)

  • Yeo, Hong-Tae;Choi, Young;Hur, Kwan-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.114-122
    • /
    • 1999
  • By using the FEM, a method for the stress analysis of the presented dies has been proposed. In this method, FEM and Lame equation are used for the analysis of the die insert and the stress ring, respectively. The proposed method includes the calculation of the contact pressure between the die insert and the stress ring. To show the validity, the proposed method has been applied to the simple test problem. The results of the stress analysis have been compared with the results of ANSYS, a commercial FE-code. Cold extrusion has been simulated by using the rigid-plastic FEM and the results of the deformation analysis have been used as the input of the die structure analysis. The stress states of the prestressed extrusion die have been obtained. The stress analysis of the die insert with stress rings has also been performed during extrusion.

  • PDF

Design of the Prestressed Cold Extrusion Die with Two Stress Rings (이중 보강링으로 예압된 냉간압출 금형 설계)

  • Heo, Gwan-Do;Yeo, Hong-Tae;Ye, Sang-Don
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.77-82
    • /
    • 2000
  • The design of the prestressed cold extrusion die with two stress rings has been performed in this study. The cold extrusion has been simulated by the rigid-plastic FEM. The stress analysis of die has been performed for both after shrink fitting and during extrusion by using the elastic FEM and the Lame's equation. According to the variation of interferences and diameter ratios, the maximum effective stress has been evaluated. As results, interferences and diameters were determined by the minimization of the maximum effective stress of die insert. The comparison of the maximum effective stress between the proposed design and the conventional design has been discussed. It was found that the maximum effective stress in the die insert is considerably affected by the stiffness of the first stress ring.

  • PDF

A Study on the Design of Prestressed Die using Flexible Tolerance Method (플렉시블 허용오차법을 이용한 예압된 금형 설계에 관한 연구)

  • Hur, K.D.;Choi, Y.;Yeo, H.T.
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.116-122
    • /
    • 2003
  • In the Prestressed die design for cold working, many constraining conditions should be considered to insure the die safety and to improve the dimension accountancy products. Among the constraining conditions, yielding conditions, diameter ratios and interferences between rings are very important. . In this paper, therefore, flexible tolerance method was used in order to search the optimum values of design variables. The maximum inner pressure is used as objective function in this numerical analysis. In the design Process, it was also involved the safety factor to the yield strength of each ring by considering the allowable tensile or compressive hoop stress in each ring. The proposed technique has been applied to the die design of backward extrusion process, and it's analytical results have been compared with that of the conventional design method.

A Study on The Design of Prestressed Die for Spur Gear Forging (스퍼기어 단조용 예압된 금형의 설계에 관한 연구)

  • 허관도;여홍태;송요선
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.19-22
    • /
    • 2003
  • In this study, the design of prestressed die for spur gear forging have been investigated. The stress concentration at notch of the die insert is very important in the design of die for the forging of spur gear such as non-axisymmetric geometry. In the previous study, the flexible tolerance method was used in order to search the optimal value of design variables considering the constrain conditions. In the design process, it was also involved the safety factor to the yield strength of each ring by considering allowable tensile or compressive hoop stress in each ring. Using this technique, the die deign for spur gear forging has been successfully performed without yielding of the die after shrink fitting and during forging.

  • PDF

A Study on the Deformation Measurement of Backward Extrusion Dies using Strain Gauge (스트레인 게이지를 이용한 후방압출금형의 변형측정에 관한 연구)

  • Yeo, Hong-Tae;Song, Yo-Sun;Choi, Young;Heo, Kwan-Do
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.713-716
    • /
    • 2002
  • The dimensional accuracy of the cold forged products is strongly dependent on the elastic behavior of the die. The elastic deformation of the die is continuously changed during the process. Therefore, it is needed to measure the deformation of die. Strain gauges are used to measure the elastic strains in the die during cold backward extrusion process. The strain gauges are attached on the die surface and embedded at the interface between the die insert and the stress ring. In order to compare the results with the FE-analysis, the rigid-plastic FE-analysis of cold backward extrusion process using DEFORM-3D has been performed, and the analysis of elastic deformation of the die has been done by using ANSYS with non-linear contact.

  • PDF

Elastic Finite Element Analysis of the Cold Forging Dies Prestressed by Shrinkage Rings (보강링에 의하여 예압된 냉간단조금형구조의 탄성유한요소 해석)

  • Seo, Dae-Yun;Lee, Min-Cheol;Jeon, Man-Su
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.347-353
    • /
    • 1998
  • A new approach of elastic finite element to die stress analysis in forging is presented in this paper. The die set analysis problem is formulated by considering contact problems under both mechanical and thermal loads. In the approach, amount of shrink fit is controlled by thermal load i.e., temperature difference between die insert and shrink fits. The loading conditions are extracted automatically from a forging simulator. The predicted solution is compared with analytical one and it has been shown that the predicted results are in excellent agreement with the analytical ones. An application example is given, which was found in a cold forging company.

  • PDF

Design of Backward Extrusion Die by using Flexible Tolerance Method and Response Surface Methodology (FTM과 RSM을 이용한 후방 압출 금형 설계)

  • Hur Kwan Do;Yeo Hong Tae;Choi Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.167-174
    • /
    • 2005
  • The design for cold extrusion dies is very important, because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, the used assumptions are such that the yield strength of each ring is selected according to the allowable tensile or compressive hoop stress in each ring and the maximum allowable inner pressure, when yielding occurs in one ring of the dies, is obtained by the proposed equation. In order to obtain design variables, such as diameter ratios and interferences, using the maximum inner pressure, the flexible tolerance method was used for shrink-fitted thick-walled cylinders. ANSYS APDL was used to perform the repeated analysis of deformation of the dies due to the variation of the design variables. The response surface methodology is utilized to analyze the relationship between the design variables and the maximum radial displacement of the die insert during extrusion. From the results, it is found that outer diameter of the die insert has the largest effect on the minimization of maximum radial displacement at the inner surface of the dies.

Application of FTM and RSM for the Design of Cold Backward Extrusion Dies (냉간 후방 압출 금형설계에 FTM과 RSM의 활용)

  • Yeo H.T.;Choi Y.;Song Y.S.;Hur K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.99-106
    • /
    • 2001
  • The design for cold extrusion dies is very important, because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, the used assumptions are such that the yield strength of each ring is selected according to the allowable tensile or compressive hoop stress in each ring and the maximum allowable inner pressure, when yielding occurs in one ring of the dies, is obtained by the proposed equation. In order to obtain design variables, such as diameter ratios and interferences, using the maximum inner pressure, the flexible tolerance method was used for shrink-fitted thick-walled cylinders. ANSYS APDL was used to perform the repeated analysis of deformation of the dies due to the variation of the design variables. The response surface methodology is utilized to analyze the relationship between the design variables and the maximum radial displacement of the die insert during extrusion. From the results, it is found that outer diameter of the die Insert has the largest effect on the minimization of maximum radial displacement at the inner surface of the dies.

  • PDF