• Title/Summary/Keyword: Prestressed Concrete (PC)

Search Result 72, Processing Time 0.022 seconds

Evaluating fire resistance of prestressed concrete bridge girders

  • Zhang, Gang;Kodur, Venkatesh;Hou, Wei;He, Shuanhai
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.663-674
    • /
    • 2017
  • This paper presents an approach for evaluating performance of prestressed concrete (PC) bridge girders exposed to fire. A finite element based numerical model for tracing the response of fire exposed T girders is developed in ANSYS. The analysis is carried out in three stages, namely, fire temperature calculation, cross sectional temperature evaluation, and then strength, deformation and effective prestress analysis on girders exposed to elevated temperatures. The applicability of the computer program in tracing the response of PC bridge girders from the initial preloading stage to failure stage, due to combined effects of fire and structure loading, is demonstrated through a case study, and validated by test data of a scaled PC box girder under ISO834 fire condition. Results from the case study show that fire severity has a significant influence on the fire resistance of PC T girders and hydrocarbon fire is most dangerous for the girder. The prestress loss caused by elevated temperature is about 10% under hydrocarbon fire till the girder failure, which can lead to the increase in deflection of the PC girder. The rate of deflection failure criterion is suggested to determine the failure of PC T girder under fire.

Reliability-Based Safety Assessment of Precast Segmental Prestressed Concrete Box Girder Bridges (신뢰성에 기초한 프리캐스트 세그멘탈 PC박스거더교량의 안전도분석평가)

  • 조효남;지광습
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.35-42
    • /
    • 1995
  • One of the main objectives of this study is to propose a realistic limit state model for reliability-based safety assessment of precast segmental prestressed concrete box girder bridges, considering 1) combined effects of bending, shear and torsional forces, and 2) the difference between transverse reinforcments of box girder. A improved limit state model is derived from a modified interaction equation compared with the Bruno's equation. A Drectional sampling algorithm is used for reliability analysis of the proposed model.

  • PDF

Parallel Nonlinear Analysis of Prestressed Concrete Frame on Cluster System (클러스터 시스템에서 프리스트레스트 콘크리트 프레임의 병렬 비선형해석)

  • 이재석;최규천
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.287-298
    • /
    • 2001
  • Analysis of nonlinear behavior of prestressed concrete frame structures on PC is a time-consuming computing job if the problem size increase to a certain degree. Cluster system has emerged as one of promising computing environments due to its good extendibility, portability, and cost-effectiveness, comparing it with high-end work-stations or servers. In this paper, a parallel nonlinear analysis procedure of prestressed concrete frame structure is presented using cluster computing. Cluster system is configured with readily available pentium III class PCs under Win98 or Linux and fast ethernet. Parallel computing algorithms on element-wise processing parts including the calculation of stiffness matrix, element stresses and determination of material states, check of material failure and calculation of unbalanced loads are developed using MPL. Validity of the method is discussed through typical numerical examples. For the case of 4 node system, maximum speedup is 3.15 and 3.74 for Win98 and Linux, respectively. Important issues for the efficient use of cluster computing system based un PCs and ethernet are addressed.

  • PDF

Time-Dependent Nonlinear Analysis of Cable-Supported Prestressed Concrete Frames (케이블로 지지된 PC뼈대의 시간의존적 비선형 해석)

  • Lee, Jae Seok;Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.33-47
    • /
    • 1992
  • A study for the material and geometric nonlinear analysis of segmentally erected cable-supported prestressed concrete plane frames including the time-dependent effects due to load history, creep, shrinkage, aging of concrete, and relaxation of prestressing steel and cable is presented. Updated Lagrangian formulation is used to account for the nonlinear behavior of the structure. For the time-dependent analysis. the time domain is divided into a discrete number of intervals, and a step-forward integration is performed as the solution progresses in the time domain. At each time step. a nonlinear finite element analysis is performed in the space domain. Segmental erection methods are implemented by providing the capability to change the configuration of the structure at any time step of the solution. The computer program CFRAME is developed and a series of numerical examples are presented to study the validity of the program.

  • PDF

Analysis on Flexural Behavior of Hollow Prestressed Concrete Filled Steel Tube Piles (프리스트레스를 받는 중공형 콘크리트 충전 강관말뚝의 휨거동 해석)

  • Chung, Heung-Jin;Paik, Kyu-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • A nonlinear finite element analysis was conducted in order to examine the moment capacity and flexural behaviour of hollow prestressed concrete filled steel tube(HCFT) piles which compose hollow PHC piles inside thin wall steel tubes. The parameters investigated in this study were various contact conditions between concrete and steel tube, thickness of concrete tube and various PC strands. A simple method is proposed to determine the ultimate flexural strength based on plastic stress distribution method. In order to verify the proposed method, calculated moment capacity of various HCFT piles are compared with the experiment and numerical analysis results.

Design Concept of Beams Reinforced by Deformed Bars and Non-Prestressed Strands in Combination (비긴장강연선과 철근이 혼용된 보의 설계방안)

  • Noh, Sam-Young;Jo, Min-Joo;Kim, Jong-Sung;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.18-29
    • /
    • 2013
  • A new precast concrete (PC) beam and column connection system using non-prestressed wire strands was recently developed. The system is composed of one unit of two-storied PC-column and PC-beams with U-shaped ends. The connection part of the column and beams is reinforced by deformed bars and non-prestressed wire strands in combination for the improvement of workability. Structural performance of this system was verified by several experimental studies. The purpose of this study is developing a design concept of the beam reinforced by deformed bars and non-prestressed wire strands in combination, in terms of the cross-sectional analysis, based on the preceded experiment. A minimum and maximum reinforcement ratio and the calculation formula for the strength of flexural member reinforced by reinforcements having different yield strengths are derived based on KBC2009. Under consideration existing research results for the application of high strength reinforcement bars, the design yield strength of the non-prestressed wire strand is suggested. An example for the cross section design, satisfying the serviceability requirements, demonstrates the applicability of the design concept developed in the study.

Influence of prestressing on the behavior of uncracked concrete beams with a parabolic bonded tendon

  • Bonopera, Marco;Chang, Kuo-Chun;Lin, Tzu-Kang;Tullini, Nerio
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.1-17
    • /
    • 2021
  • The influence of prestress force on the fundamental frequency and static deflection shape of uncracked Prestressed Concrete (PC) beams with a parabolic bonded tendon was examined in this paper. Due to the conflicts among existing theories, the analytical solutions for properly considering the dynamic and static behavior of these members is not straightforward. A series of experiments were conducted for a total period of approximately 2.5 months on a PC beam made with high strength concrete, subsequently and closely to the 28 days of age of concrete. Specifically, the simply supported PC member was short term subjected to free transverse vibration and three-point bending tests during its early-age. Subsequently, the experimental data were compared with a model that describes the dynamic behavior of PC girders as a combination of two substructures interconnected, i.e., a compressed Euler-Bernoulli beam and a tensioned parabolic cable. It was established that the fundamental frequency of uncracked PC beams with a parabolic bonded tendon is sensitive to the variation of the initial elastic modulus of concrete in the early-age curing. Furthermore, the small variation in experimental frequency with time makes doubtful its use in inverse problem identifications. Conversely, the relationship between prestress force and static deflection shape is well described by the magnification factor formula of the "compression-softening" theory by assuming the variation of the chord elastic modulus of concrete with time.

Design of Anchorage Zone in Prestressed Concrete Structure Using Nonlinear Strut and Tie Model (비선형 스트럿-타이 모델에 의한 PC 구조물의 정착부 설계)

  • 배한옥;변근주;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.392-397
    • /
    • 1997
  • In this paper, design and analysis of anchorage zone in prestressed concrete structure using nonlinear strut and tie model is presented. Nonlinear strut and tie model is an analysis and design model which constructs strut and tie model based on nonlinear analysis considering the nonlinear behavior of concrete. Based on the nonlinear strut and tie model, the analysis and design are performed for the anchorage zone having singular concentric tendons, singular eccentric tendons and multiple tendons, respectively. For verification of the model, comparisons are made with experimental results as well as results by linear strut and tie models. from the comparisons, it is shown that the design of the anchorage zone by the nonlinear model is still economical without loosing the degree of safety and the prediction of the ultimate load by the nonlinear model gives better accuracy than by the linear one.

  • PDF

Numerical Study on Fire Performance of Hollowcore Slabs (할로우코어 슬래브의 내화성능에 대한 수치해석 연구)

  • Min, Jeong-Ki;Woo, Young-Je
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.3
    • /
    • pp.95-102
    • /
    • 2015
  • Numerical model on precast prestressed concrete (PC) hollowcore slabs using 11.3 mm diameter 7-wire stand was developed based on finite element analysis. In order to validate the modelling, previous experiment results with respect to prestressed solid concrete slabs were used and compared throughout the course of fire exposure. In addition to, the fire performance of hollowcore slabs with different aggregate types, moisture contents and compressive strength of concrete was investigated. As a result, it can be seen that the type of aggregates and moisture contents used in hollowcore slabs can affect the fire performance as well as temperature developments.

Performance of Beam-Slab connection of Waffle Shape Precast Prestressed Concrete Slab System (와플(Waffle) 형상을 가지는 PC슬래브의 보-슬래브 접합 성능)

  • Heo, Seok-Jae;Kim, Hyun-Jin;Ryu, Han-Gook;Choi, Kyoung-Kyu;Cho, Seung-Ho;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.21-24
    • /
    • 2008
  • This research verifies efficiency of Beam-Slab connection with Precast Prestressed Concrete Slab System of WAffle Shape(WAS) which solves problems of double-T system(DTS). Specimen is produced in Precast Concrete factories and is made in a way that WAS is layed across inverted T beam(ITB) and then it is filled with packing. After casting topping concrete into the specimen, curing is carried out. Variable are width of shear key and packing. The analysis is carried out in comparison between displacement and strength of Beam-Slab connection of specimen. The variable is not a effect in joint efficiency. Consequently, it may plans at the minimum with of shear key that packing is easy, will not affect strength.

  • PDF