• Title/Summary/Keyword: Prestressed Concrete (PC)

Search Result 72, Processing Time 0.024 seconds

Shear Strength of Prestressed Steel Fiber Concrete I-Beams

  • Tadepalli, Padmanabha Rao;Dhonde, Hemant B.;Mo, Y.L.;Hsu, Thomas T.C.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.267-281
    • /
    • 2015
  • Six full-scale prestressed concrete (PC) I-beams with steel fibers were tested to failure in this work. Beams were cast without any traditional transverse steel reinforcement. The main objective of the study was to determine the effects of two variables-the shear-span-to-depth ratio and steel fiber dosage, on the web-shear and flexural-shear modes of beam failure. The beams were subjected to concentrated vertical loads up to their maximum shear or moment capacity using four hydraulic actuators in load and displacement control mode. During the load tests, vertical deflections and displacements at several critical points on the web in the end zone of the beams were measured. From the load tests, it was observed that the shear capacities of the beams increased significantly due to the addition of steel fibers in concrete. Complete replacement of traditional shear reinforcement with steel fibers also increased the ductility and energy dissipation capacity of the PC I-beams.

A Study on Ready-Mixed-Mortar for Prestressed Concrete grouting material (PC (Prestressed Concrete) 그라우트용 레미탈에 관한 연구)

  • 박길수;김경덕;이학봉;노현승;이완경
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.888-895
    • /
    • 2000
  • As conventional grouting materials for the sheath such as cement slurry or cement-mortar are mixed and pumped in site, those harden with bleeding or shrinkage and meets low compressive strength. Also the materials haven't always same cements, sand size distributions, additives in site, so those materials have unstable quality properties. We have studies on ready-mixed-mortar for grouting pretensioned or post-tensioned cables and rods to encapsulate the steel so that we have developed a formulation of specially selected, flowable, shrinkage-compensating materials.

  • PDF

Flexural Behavior of I-Section Prestressed Dual Concrete Beam Using High Performance Steel Fiber Reinforced Concrete (고성능 강섬유보강 콘크리트가 적용된 I-단면 프리스트레스트 이중 콘크리트 보의 휨 거동)

  • Park, Tae-Hyo;Yun, Sung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.162-165
    • /
    • 2006
  • I-section prestressed concrete(I-PC) beam crack due to low tensile strength, may decrease rigidity and structural performance by excessive deflection. In an effort to this problem, in this research, I-section prestressed dual concrete(I-PDC) beam has been proposed, consisting of normal strength concrete in compression zone, and high performance steel fiber reinforced concrete(HPSFRC) with a bottom flange depth in tensile zone. Crack formation and its propagation are controlled by the HPSFRC in I-PDC beam. The initial cracking and service limit loads are increased along with the load carrying capacity and flexural stiffness.

  • PDF

Nonlinear Analysis of the Segmentally Erected Prestressed Concrete Box-Girder Bridges and Post-Processing (PC 박스거더교량의 시공단계별 비선형 해석 및 후처리 기법)

  • 오병환;강영진;이형준;이명규;홍기증;김영진;임선택
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.368-373
    • /
    • 1994
  • Recently, a large number of box girder bridges with cantilevered decks have been constructed. Especially, segmentally erected prestressed concrete box girder bridges are widely used as economic and aesthetic solutions for long span bridges. Segmental erection is a particularly attractive construction alternative in cases where continuously supported formwork is impractical or uneconomical. In segmentally erected bridges, the structural systems are changed as the construction stages are progressive and redistribution of member forces occurs due to time dependent effects of concrete and relaxation of prestressing steel. Then, in segmentally erected bridges, analysis are required at each construction states. In this study, nonlinear analysis progam of the segmentally erected prestressed concrete box girder bridges is developed in taking into account nonlinearity of material and geometry, time dependent effect of concrete and relaxation of prestressing steel.

  • PDF

Flexural Behavior of Prestressed Dual Concrete Beams (프리스트레스트 이중 콘크리트 보의 휨 거동 해석)

  • Park Tae-Hyo;Yun Sung-Hwan;Yun Hee-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.445-454
    • /
    • 2005
  • Cracks due to low tensile strength in prestressed concrete (PC) beams may decrease rigidity and structural performance, resulting in excessive deflection. In an effort to solve this problem, in this research, prestressed dual concrete (PDC) has been proposed, consisting of normal strength concrete in compression zone, and high performance steel fiber reinforced concrete(HPSFRC) with a partial depth in tensile zone. Three PDC beams with different depths of HPSFRC and two PC beams were cast for experiments. Analytical models at each stage, i.e., precracking, postcracking, and ultimate, were proposed for analysis of flexural behavior in PDC beams. The experimental results agree well to the analytical ones. Crack formation and its propagation are controlled by the HPSFRC in PDC beams. The initial cracking and service limit loads are increased along with the load carrying capacity and flexural stiffness.

A Study on Torsional Tensile Strength of Concrete (콘크리트의 비틀림 인장강도에 관한 연구)

  • 박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.160-165
    • /
    • 1996
  • The tensile of concrete in one of important factor for study of reinforced concrete as well as prestressed concrete structures. In many countries, a numerous experimental studies are being undertaken to investigate correlation between compressive and tensile strength of concrete. This study is focused on identifying the relationship between the compressive strength and torsional tensile strength of concrete and, on crack of RC and PC structure.

  • PDF

Multiscale modeling of reinforced/prestressed concrete thin-walled structures

  • Laskar, Arghadeep;Zhong, Jianxia;Mo, Y.L.;Hsu, Thomas T.C.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.69-89
    • /
    • 2009
  • Reinforced and prestressed concrete (RC and PC) thin walls are crucial to the safety and serviceability of structures subjected to shear. The shear strengths of elements in walls depend strongly on the softening of concrete struts in the principal compression direction due to the principal tension in the perpendicular direction. The past three decades have seen a rapid development of knowledge in shear of reinforced concrete structures. Various rational models have been proposed that are based on the smeared-crack concept and can satisfy Navier's three principles of mechanics of materials (i.e., stress equilibrium, strain compatibility and constitutive laws). The Cyclic Softened Membrane Model (CSMM) is one such rational model developed at the University of Houston, which is being efficiently used to predict the behavior of RC/PC structures critical in shear. CSMM for RC has already been implemented into finite element framework of OpenSees (Fenves 2005) to come up with a finite element program called Simulation of Reinforced Concrete Structures (SRCS) (Zhong 2005, Mo et al. 2008). CSMM for PC is being currently implemented into SRCS to make the program applicable to reinforced as well as prestressed concrete. The generalized program is called Simulation of Concrete Structures (SCS). In this paper, the CSMM for RC/PC in material scale is first introduced. Basically, the constitutive relationships of the materials, including uniaxial constitutive relationship of concrete, uniaxial constitutive relationships of reinforcements embedded in concrete and constitutive relationship of concrete in shear, are determined by testing RC/PC full-scale panels in a Universal Panel Tester available at the University of Houston. The formulation in element scale is then derived, including equilibrium and compatibility equations, relationship between biaxial strains and uniaxial strains, material stiffness matrix and RC plane stress element. Finally the formulated results with RC/PC plane stress elements are implemented in structure scale into a finite element program based on the framework of OpenSees to predict the structural behavior of RC/PC thin-walled structures subjected to earthquake-type loading. The accuracy of the multiscale modeling technique is validated by comparing the simulated responses of RC shear walls subjected to reversed cyclic loading and shake table excitations with test data. The response of a post tensioned precast column under reversed cyclic loads has also been simulated to check the accuracy of SCS which is currently under development. This multiscale modeling technique greatly improves the simulation capability of RC thin-walled structures available to researchers and engineers.

Ultimate Analysis of Prestressed Concrete Cable-Stayed Bridges (프리스트레스트 콘크리트 사장교의 극한해석)

  • Lee, Jae Seok;Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.85-98
    • /
    • 1993
  • A method of analysis for the material and geometric nonlinear analysis of planar prestressed concrete cable-stayed bridges including the time-dependent effects due to load history, creep, shrinkage, aging of concrete and relaxation of prestress is described. The analysis procedure, based on the finite element method, is capable of predicting the response of these structures through elastic, cracking, inelastic and ultimate ranges. The nonlinear formulation for the description of motion is based on the updated Lagrangian approach. To account for the material nonlinearity, nonlinear stress-strain relationship and cracking of concrete, nonlinear stress-strain relationships of reinforcing steel, prestressing steel, and cable, including load reversal are given. Results from a numerical examples on ultimate analyses of cable-stayed bridges are presented to illustrate the analysis method.

  • PDF

Numerical Study on the Leakage Safety of the Membrane LNG Tank Wall (멤브레인식 LNG 탱크벽체의 누설안전에 관한 수치해석적 연구)

  • Kim, Chung-Kyun;Shim, Jong-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.14-20
    • /
    • 2008
  • In this numerical study, the leakage safety of the LNG tank in which is constructed by membrane inner tank-plywood-polyurethane form-plywood-prestressed concrete structures has been presented for four leakage analysis models. The LNG leak criterion of the tank wall with a storage capacity of $200,000\;m^3$ is analyzed based on the thermal resistance technique. This means that if the cryogenic temperature of a leaked LNG is detected at the outer side of the PC wall, it may be leaked through the wall thickness of the tank. The calculated results based on the thermal resistance method between two walls show that the plywood, PUF, and another plywood walls may block the leakage of the leaked LNG even though the strength of these walls is already collapsed by a leaked LNG pressure. But, the leaked LNG may pass the thickness of the prestressed concrete wall for a period of elapsed time even though the PC outer tank supports the leaked LNG pressure. Thus, the PC outer tank may extend the leakage time of a leaked LNG.

  • PDF

Flexural Response of Negative Moment Region of Hybrid Prestressed Precast Concrete (HPPC) System (하이브리드 프리스트레스트 프리캐스트 콘크리트 구조시스템의 부모멘트 영역 휨거동)

  • Choi, Seung-Ho;Hwang, Jin-Ha;Heo, InWook;Kim, Kang Su;Woo, Woon-Taek
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.10
    • /
    • pp.3-10
    • /
    • 2018
  • Hybrid Prestressed Precast Concrete System (HPPC system) is a newly developed frame system that can improve the performance of precast concrete (PC) joints by post-tensioning. In particular, the details proposed in this study can reduce the lifting weight of the PC members and eliminate problems caused by cracks in the joints that occur under service loads. This study performed an evaluation on the negative moment performance of full-scaled HPPC girders. The test specimens were cast with or without slabs, with bonded or unbonded tendons, and had different post-tensioned lengths in tensile section. The test results showed that the specimens with slabs had significantly higher stiffness and strength than those without slabs. There were no differences in the flexural behavior between those with bonded or unbonded tendons, and between those with short or long post-tensioned lengths in the negative moment region.