• Title/Summary/Keyword: Pressurizer

Search Result 137, Processing Time 0.024 seconds

An Input Feature Selection Method Applied to Fuzzy Neural Networks for Signal Estimation

  • Na, Man-Gyun;Sim, Young-Rok
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.457-467
    • /
    • 2001
  • It is well known that the performance of a fuzzy neural network strongly depends on the input features selected for its training. In its applications to sensor signal estimation, there are a large number of input variables related with an output As the number of input variables increases, the training time of fuzzy neural networks required increases exponentially. Thus, it is essential to reduce the number of inputs to a fuzzy neural network and to select the optimum number of mutually independent inputs that are able to clearly define the input-output mapping. In this work, principal component analysis (PCA), genetic algorithms (CA) and probability theory are combined to select new important input features. A proposed feature selection method is applied to the signal estimation of the steam generator water level, the hot-leg flowrate, the pressurizer water level and the pressurizer pressure sensors in pressurized water reactors and compared with other input feature selection methods.

  • PDF

Blowdown and Condensation (B&C) Loop for Development of Reactor Depressurization System

  • Park, Choon K.;Chul H. Song;Soon Y. Won;Seok Cho;Moon K. Chung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.61-66
    • /
    • 1996
  • High pressure. high temperature steam/water blowdown test loop has been constructed. The loop simulates a pressurizer. depressurizalion system and In-Containment Refueling Water Storage Tank (IRWST) with full pressure and temperature conditions. and will be used to generate data for development of an optimal sparser as well as for design of safety/automatic depressurization system. In addition. experiments for reactor safety and pressurizer thermal hydraulics are scheduled. In this paper. general description of the Blowdown and Condensation (B&C) Loop will be given together with the test program.

  • PDF

Thermal stratification in a horizontal pipe of pressurizer surge line (가압기밀림관의 수평배관내 열성층유동)

  • Jung, I,S,;Kim, Y.;Youm, H.K.;Park, M.H.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1449-1457
    • /
    • 1996
  • In this paper, the unsteady two dimensional model for the thermal stratification in the pressurizer surge line of PWR plant has been proposed to numerically investigate the heat transfer and flow characteristics. The dimensionless governing equations are solved by using the Control Volume Formulation and SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm. The temperature profile of fluids and pipe wall with time are shown when the thermal stratification occurs in the horizontal pipe. The numerical result shows that the maximum dimensionless temperature difference is about O.514 between hot and cold section of pipe wall at dimensionless time 1,632.

The Effect of an Aggressive Cool-Down Following A Refueling Outage Accident in which a Pressurizer Safety valve is Stuck Open

  • Lim, Ho- Gon;Park, Jin-Hee;Jang, Seung-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.497-511
    • /
    • 2004
  • A PSV (pressurizer safety valve) popping test carried out in the early phases of a refueling outage may trigger a test-induced LOCA(loss of coolant accident) if a PSV fails to fully close and is stuck in a partially open position. According to a KSNP (Korea standard nuclear power plant) low power and shutdown PSA (probabilistic safety assessment), the failure of a high pressure safety injection (HPSI) accompanied by the failure of a PSV to fully close was identified as a dominant accident sequence with a significant impact on low power and shutdown risks (LPSR). In this study, we aim to investigate and verify a new means for mitigating this type of accident using a thermal-hydraulic analysis. In particular, we explore the applicability of an aggressive cool-down combined with operator actions. The results of the various sensitivity studies performed there will help reduce LPSR and improve Refueling outage safety.

Careful Determination of Inservice Inspection of piping by Computer Analysis in Nuclear Power Plant (배관해석에 의한 원전 배관부의 검사부위 선정)

  • Lim, H.T.;Lee, S.L.;Lee, J.P.;Kim, B.C.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.2
    • /
    • pp.14-20
    • /
    • 1992
  • Stress analysis has been performed using computer program ANSYS in the pressurizer surge line in accordance with ASME Sec. III in order to predict possibility of fatigue failure due to thermal stratification phenomena in pipes connected to reactor coolant system of nuclear power plants. Highly vulnerable area to crack generation has been chosen by the analysis of fatigue due to thermal stress in pressurizer surge line. This kind of result can be helpful to choose the location requiring intensive care during inservice inspection of nuclear power plants.

  • PDF

DYNAMIC CHARACTERISTICS OF A PARTIALLY FLUIDFILLED CYLINDRICAL SHELL

  • Jhung, Myung-Jo;Yu, Seon-Oh;Lim, Yeong-Taek
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.167-174
    • /
    • 2011
  • A pressurizer in a small integral type pressurized water reactor is located inside the upper region of the reactor vessel, and uses a space between the upper head of the reactor vessel and the upper region of the upper guide structure which is partially filled with fluid depending on the operating power. This new design requires a comprehensive investigation of vibration characteristics. This study investigates the modal characteristics of a pressurizer which uses a simplified cylindrical shell model, focusing on how having fluid in the shell affects vibration and response characteristics. In addition, an analysis of sloshing is performed and the response characteristics are addressed.